数学经典问题·商高定理[1].doc_第1页
数学经典问题·商高定理[1].doc_第2页
数学经典问题·商高定理[1].doc_第3页
数学经典问题·商高定理[1].doc_第4页
数学经典问题·商高定理[1].doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(大量管理资料下载)数学经典问题商高定理(毕达哥拉斯定理、勾股定理)若一直角形的两股为a,b斜边为c,则有a2+b2=c2。我们都很熟悉这个性质,人们相信是毕达格拉斯约公元前560年公元前480发现的,因此把它叫做毕氏定理。毕氏定理也可以用几何的形式来解释,那就是直角三角形直角边上的两个正方形的面积和等於斜边上正方形的面积。如下图所示:传闻这个定理有一个绰号叫“新娘图”,又有人称为“新娘的椅子”,可能是从其几何图形得到的敏感吧!中国在商高时代(公元前1100年)就已经知道“勾三股四弦五”的关系,远早於毕达格拉斯,因此有人主张毕氏定理应该称呼为商高定理,但普遍性的定理则在陈子时代(公元前67世纪),而提出定理的证明则首推赵君卿(见周髀的赵君卿注)。赵氏是三世纪的人,现在这个定理普通称为勾股弦定理或勾股定理。毕达格拉斯曾提一组勾股数的正数数解:a=2n+1,b=2n2+2n,c=2n2+2n+1,其特点是斜边与其中一股的差为1。柏拉图也给了另一组公式:a=2n,b=n2-1,c=n2+1,此时斜边与其中一股之差为2。但他们都不是方程式a2+b2=c2的所有解,全部解的公式是a=2mn,y=m2-n2,z=m2+n2其中m,n(mn)是互质且一奇一偶的任意正整数。数学经典问题蜂窝猜想加拿大科学记者德富林在环球邮报上撰文称,经过1600年努力,数学家终于证明蜜蜂是世界上工作效率最高的建筑者。四世纪古希腊数学家佩波斯提出,蜂窝的优美形状,是自然界最有效劳动的代表。他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。他的这一猜想称为“蜂窝猜想”,但这一猜想一直没有人能证明。美密执安大学数学家黑尔宣称,他已破解这一猜想。蜂窝是一座十分精密的建筑工程。蜜蜂建巢时,青壮年工蜂负责分泌片状新鲜蜂蜡,每片只有针头大校而另一些工蜂则负责将这些蜂蜡仔细摆放到一定的位置,以形成竖直六面柱体。每一面蜂蜡隔墙厚度及误差都非常小。6面隔墙宽度完全相同,墙之间的角度正好120度,形成一个完美的几何图形。人们一直疑问,蜜蜂为什么不让其巢室呈三角形、正方形或其他形状呢?隔墙为什么呈平面,而不是呈曲面呢?虽然蜂窝是一个三维体建筑,但每一个蜂巢都是六面柱体,而蜂蜡墙的总面积仅与蜂巢的截面有关。由此引出一个数学问题,即寻找面积最大、周长最小的平面图形。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。但如果多边形的边是曲线时,会发生什么情况呢?陶斯认为,正六边形与其他任何形状的图形相比,它的周长最小,但他不能证明这一点。而黑尔在考虑了周边是曲线时,无论是曲线向外突,还是向内凹,都证明了由许多正六边形组成的图形周长最校他已将19页的证明过程放在因特网上,许多专家都已看到了这一证明,认为黑尔的证明是正确的。数学经典问题哥德巴赫猜想世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如633,1257等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个=9之奇数,都可以表示成三个奇质数之和。这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(9 + 9)。这种缩小包围圈的办法很管用,科学家们于是从(99)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。 目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chens Theorem)“任何充分大的偶数都是一个质数与一个自然数之和,而後者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。在陈景润之前,关於偶数可表示为 s 个质数的乘积与 t 个质数的乘积之和(简称“s + t ”问题)之进展情况如下:1920年,挪威的布朗(Brun)证明了 9 + 9 。1924年,德国的拉特马赫(Rademacher)证明了7 + 7 。1932年,英国的埃斯特曼(Estermann)证明了 6 + 6 。1937年,意大利的蕾西(Ricci)先後证明了5 + 7 , 4 + 9 , 3 + 15 和2 + 366 1938年,苏联的布赫夕太勃(亦译布赫斯塔勃)证明了5 + 5 。1940年,苏联的布赫夕太勃证明了 4 + 4 。1948年,匈牙利的瑞尼(Renyi)证明了1 + c ,其中 c 是一很大的自然数。1956年,中国的王元证明了 3 + 4 。1957年,中国的王元先後证明了 3 + 3 和 2 + 3 。1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 1 + 5 , 中国的王元证明了1 + 4 。1965年,苏联的布赫夕太勃和小维诺格拉多夫(BHHopappB),及意大利的朋比利(Bombieri)证明了1 + 3 。1966年,中国的陈景润证明了 1 + 2 。最终会由谁攻克 1 + 1 这个难题呢?现在还没法预测。数学经典问题费马最后定理被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有关数学难题得以解决的消息,那则消息的标题是“在陈年数学困局中,终於有人呼叫我找到了”。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的男人照片。这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以“业余王子”之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内容是有关一个方程式 xn + yn =zn的正整数解的问题,当n=2时就是我们所熟知的毕氏定理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13.等等。费马声称当n2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法找到整数解。当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最後定理也就成了数学界的心头大患,极欲解之而後快。十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六年两度悬赏金质奖章和三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫斯克尔(P. Wolfskehl)在1908年提供十万马克,给能够证明费马最後定理是正确的人,有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然如此仍然吸引不少的“数学痴”。二十世纪电脑发展以後,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确的(注286243-1为一天文数字,大约为25960位数)。虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是利用二十世纪过去三十年来抽象数学发展的结果加以证明。五年代日本数学家谷山丰首先提出一个有关椭圆曲线的猜想,後来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八年代德国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最後定理也是正确的。这个结论由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。要证明费马最後定理是正确的(即xn + yn = zn 对n3 均无正整数解)只需证 x4+ y4 = z4 和xp+ yp = zp(p为奇质数),都没有整数解。附录:费马小传费马(Pierre de Fermat)是十七世纪最伟大的数学家之一,1601年8月20日生於法国南部土鲁士(Toulous)附近的一个小镇,父亲是一个皮革商,1665年1月12日逝世。费马在大学时专攻法律,学成後成为专业的律师,也曾经当过土鲁士议会议员。费马是一位博览群书见广多闻的谆谆学者,精通数国语言,对於数学及物理也有浓厚的兴趣,是一位多采多艺的人。虽然他在近三十岁才开始认真专研数学,但是他对数学的贡献使他赢得业余王子(the prince of amateurs)之美称。这个头衔正足以表彰他在数学领域的一级成就,他在笛卡儿(Descartes)之前引进解析几何,而且在微积分的发展上有重大的贡献,尤其为人称道的是费马和巴斯卡(Pascal)被公认是机率论的先驱。然而人们所津津乐道的则是他在数论上的一些杰作,例如费马定理(又称费马小定理,以别於费马最後定理):ap a(modp),对任意整数a及质数p均成立。这个定理第一次出现於1640年的一封信中,此定理的证明後来由欧拉(Euler)发表。费马为人非常谦虚、不尚名利,生前很少发表论文,他大部分的作品都见诸於与友人之间的信件和私人的札记,但通常都未附证明。最有名的就是俗称的费马最后定理,费马天生的直觉实在是异常敏锐,他所断言的其他定理,後来都陆续被人证出来。有先见之明的费马实在是数学史上的一大奇葩。数学经典问题几何的三大问题平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。几何三大问题是:1、化圆为方求作一正方形使其面积等於一已知圆;2、三等分任意角;3、倍立方求作一立方体使其体积是一已知立方体的二倍。圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为(1)2=,所以化圆为方的问题等於去求一正方形其面积为,也就是用尺规做出长度为1/2的线段(或者是的线段)。三大问题的第二个是三等分一个角的问题。对於某些角如90、180三等分并不难,但是否所有角都可以三等分呢?例如60,若能三等分则可以做出20的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360/18=20)。其实三等分角的问题是由求作正多边形这一类问题所引起来的。第三个问题是倍立方。埃拉托塞尼(公元前276年公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。1637年笛卡儿创建解析几何以後,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了的超越性(即不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。数学经典问题四色猜想世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。18781880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。数学经典问题希尔伯特23个数学问题在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为数学问题的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析。(1)康托的连续统基数问题。1874年,康托猜测在可数集基数和实数集基数之间没有别的基数,即著名的连续统假设。1938年,侨居美国的奥地利数理逻辑学家哥德尔证明连续统假设与ZF集合论公理系统的无矛盾性。1963年,美国数学家科思(P.Choen)证明连续统假设与ZF公理彼此独立。因而,连续统假设不能用ZF公理加以证明。在这个意义下,问题已获解决。(2)算术公理系统的无矛盾性。欧氏几何的无矛盾性可以归结为算术公理的无矛盾性。希尔伯特曾提出用形式主义计划的证明论方法加以证明,哥德尔1931年发表不完备性定理作出否定。根茨(G.Gentaen,1909-1945)1936年使用超限归纳法证明了算术公理系统的无矛盾性。(3)只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。问题的意思是:存在两个登高等底的四面体,它们不可能分解为有限个小四面体,使这两组四面体彼此全等德思(M.Dehn)1900年已解决。(4)两点间以直线为距离最短线问题。此问题提的一般。满足此性质的几何很多,因而需要加以某些限制条件。1973年,苏联数学家波格列洛夫(Pogleov)宣布,在对称距离情况下,问题获解决。(5)拓扑学成为李群的条件(拓扑群)。这一个问题简称连续群的解析性,即是否每一个局部欧氏群都一定是李群。1952年,由格里森(Gleason)、蒙哥马利(Montgomery)、齐宾(Zippin)共同解决。1953年,日本的山迈英彦已得到完全肯定的结果。(6)对数学起重要作用的物理学的公理化。1933年,苏联数学家柯尔莫哥洛夫将概率论公理化。后来,在量子力学、量子场论方面取得成功。但对物理学各个分支能否全盘公理化,很多人有怀疑。(7)某些数的超越性的证明。需证:如果是代数数,是无理数的代数数,那么一定是超越数或至少是无理数(例如,22和e)。苏联的盖尔封特(Gelfond)1929年、德国的施奈德(Schneider)及西格尔(Siegel)1935年分别独立地证明了其正确性。但超越数理论还远未完成。目前,确定所给的数是否超越数,尚无统一的方法。(8)素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素共问题。素数是一个很古老的研究领域。希尔伯特在此提到黎曼(Riemann)猜想、哥德巴赫(Goldbach)猜想以及孪生素数问题。黎曼猜想至今未解决。哥德巴赫猜想和孪生素数问题目前也未最终解决,其最佳结果均属中国数学家陈景润。(9)一般互反律在任意数域中的证明。1921年由日本的高木贞治,1927年由德国的阿廷(E.Artin)各自给以基本解决。而类域理论至今还在发展之中。(10)能否通过有限步骤来判定不定方程是否存在有理整数解?求出一个整数系数方程的整数根,称为丢番图(约210-290,古希腊数学家)方程可解。1950年前后,美国数学家戴维斯(Davis)、普特南(Putnan)、罗宾逊(Robinson)等取得关键性突破。1970年,巴克尔(Baker)、费罗斯(Philos)对含两个未知数的方程取得肯定结论。1970年。苏联数学家马蒂塞维奇最终证明:在一般情况答案是否定的。尽管得出了否定的结果,却产生了一系列很有价值的副产品,其中不少和计算机科学有密切联系。(11)一般代数数域内的二次型论。德国数学家哈塞(Hasse)和西格尔(Siegel)在20年代获重要结果。60年代,法国数学家魏依(A.Weil)取得了新进展。(12)类域的构成问题。即将阿贝尔域上的克罗内克定理推广到任意的代数有理域上去。此问题仅有一些零星结果,离彻底解决还很远。(13)一般七次代数方程以二变量连续函数之组合求解的不可能性。七次方程x7+ax3+bx2+cx+1=0的根依赖于3个参数a、b、c;x=x(a,b,c)。这一函数能否用两变量函数表示出来?此问题已接近解决。1957年,苏联数学家阿诺尔德(Arnold)证明了任一在0,1上连续的实函数f(x1,x2,x3)可写成形式hi(i(x1,x2),x3)(i=19),这里hi和i为连续实函数。柯尔莫哥洛夫证明f(x1,x2,x3)可写成形式hi(i1(x1)+i2(x2)+i3(x3)(i=17)这里hi和i为连续实函数,ij的选取可与f完全无关。1964年,维土斯金(Vituskin)推广到连续可微情形,对解析函数情形则未解决。(14)某些完备函数系的有限的证明。即域K上的以x1,x2,.,xn为自变量的多项式fi(i=1,.,m),R为KX1,Xm上的有理函数F(X1,Xm)构成的环,并且F(f1,fm)Kx1,xm试问R是否可由有限个元素F1,FN的多项式生成?这个与代数不变量问题有关的问题,日本数学家永田雅宜于1959年用漂亮的反例给出了否定的解决。(15)建立代数几何学的基础。荷兰数学家范德瓦尔登1938年至1940年,魏依1950年已解决。注一:舒伯特(Schubert)计数演算的严格基础。一个典型的问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观的解法。希尔伯特要求将问题一般化,并给以严格基础。现在已有了一些可计算的方法,它和代数几何学有密切的关系。但严格的基础至今仍未建立。(16)代数曲线和曲面的拓扑研究。此问题前半部涉及代数曲线含有闭的分枝曲线的最大数目。后半部要求讨论备dx/dy=Y/X的极限环的最多个数N(n)和相对位置,其中X、Y是x、y的n次多项式。对n=2(即二次系统)的情况,1934年福罗献尔得到N(2)1;1952年鲍廷得到N(2)3;1955年苏联的波德洛夫斯基宣布N(2)3,这个曾震动一时的结果,由于其中的若干引理被否定而成疑问。关于相对位置,中国数学家董金柱、叶彦谦1957年证明了(E2)不超过两串。1957年,中国数学家秦元勋和蒲富金具体给出了n2的方程具有至少3个成串极限环的实例。1978年,中国的史松龄在秦元勋、华罗庚的指导下,与王明淑分别举出至少有4个极限环的具体例子。1983年,秦元勋进一步证明了二次系统最多有4个极限环,并且是(1,3)结构,从而最终地解决了二次微分方程的解的结构问题,并为研究希尔伯特第(16)问题提供了新的途径。(17)半正定形式的平方和表示。实系数有理函数f(x1,.,xn)对任意数组(x1,,xn)都恒大于或等于0,确定f是否都能写成有理函数的平方和?1927年阿廷已肯定地解决。(18)用全等多面体构造空间。德国数学家比贝尔巴赫(Bieberbach)1910年,莱因哈特(Reinhart)1928年作出部分解决。(19)正则变分问题的解是否总是解析函数?德国数学家伯恩斯坦(Bernrtein,1929)和苏联数学家彼德罗夫斯基(1939)已解决。(20)研究一般边值问题。此问题进展迅速,己成为一个很大的数学分支。日前还在继读发展。(21)具有给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明。此问题属线性常微分方程的大范围理论。希尔伯特本人于1905年、勒尔(H.Rohrl)于1957年分别得出重要结果。1970年法国数学家德利涅(Deligne)作出了出色贡献。(22)用自守函数将解析函数单值化。此问题涉及艰深的黎曼曲面理论,1907年克伯(P.Koebe)对一个变量情形已解决而使问题的研究获重要突破。其它方面尚未解决。(23)发展变分学方法的研究。这不是一个明确的数学问题。20世纪变分法有了很大发展。数学经典问题七桥问题当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论