![高中数学高二理科选修2-3排列组合导学案.docx_第1页](http://file1.renrendoc.com/fileroot_temp2/2020-3/16/83838f61-8323-4376-90ec-1fe2eda702a2/83838f61-8323-4376-90ec-1fe2eda702a21.gif)
![高中数学高二理科选修2-3排列组合导学案.docx_第2页](http://file1.renrendoc.com/fileroot_temp2/2020-3/16/83838f61-8323-4376-90ec-1fe2eda702a2/83838f61-8323-4376-90ec-1fe2eda702a22.gif)
![高中数学高二理科选修2-3排列组合导学案.docx_第3页](http://file1.renrendoc.com/fileroot_temp2/2020-3/16/83838f61-8323-4376-90ec-1fe2eda702a2/83838f61-8323-4376-90ec-1fe2eda702a23.gif)
![高中数学高二理科选修2-3排列组合导学案.docx_第4页](http://file1.renrendoc.com/fileroot_temp2/2020-3/16/83838f61-8323-4376-90ec-1fe2eda702a2/83838f61-8323-4376-90ec-1fe2eda702a24.gif)
![高中数学高二理科选修2-3排列组合导学案.docx_第5页](http://file1.renrendoc.com/fileroot_temp2/2020-3/16/83838f61-8323-4376-90ec-1fe2eda702a2/83838f61-8323-4376-90ec-1fe2eda702a25.gif)
已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
排列(1)导学案【学习目标 】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【重点难点 】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【学法指导 】(预习教材P14 P18,找出疑惑之处)复习1:交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有2个不重复的英文字母和4个不重复的阿拉伯数字,并且2个字母必须合成一组出现,4个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照? 复习2:从甲,乙,丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名参加下午的活动,有多少种不同的选法? 【教学过程】(一)导入探究任务一:排列 问题1:上面复习1,复习2中的问题,用分步计数原理解决显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?新知1:排列的定义一般地,从n个 元素中取出m( )个元素,按照一定的 排成一排,叫做从 个不同元素中取出 个元素的一个排列. 试试: 写出从4个不同元素中任取2个元素的所有排列.反思:排列问题有何特点?什么条件下是排列问题?探究任务二:排列数及其排列数公式新知2 排列数的定义从 个 元素中取出 ()个元素的 的个数,叫做从n个不同元素取出m元素的排列数,用符合 表示.试试: 从4个不同元素a,b, c,d中任取2个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?问题: 从n个不同元素中取出2个元素的排列数是多少? 从n个不同元素中取出3个元素的排列数是少? 从n个不同元素中取出m()个元素的排列数是多少? 新知3 排列数公式从n个不同元素中取出m()个元素的排列数 新知4 全排列从n个不同元素中 取出的一个排列,叫做n个元素的一个全排列,用公式表示为 (二)深入学习例1计算:; ; .变式:计算下列各式: ; ; .例2若,则 , 变式:乘积用排列数符号表示 ()例3 求证: 变式 求证: 小结:排列数可以用阶乘表示为= 动手试试练1. 填写下表:n234567n!练2. 从这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?.【当堂检测 】1. 计算: ;2. 计算: ;3. 某年全国足球甲级(A组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行 场比赛;4. 5人站成一排照相,共有 种不同的站法;5. 从1,2,3,4这4个数字中,每次取出3个排成一个3位数,共可得到 个不同的三位数. 1. 求证:2. 一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假设每股道只能停放1列火车)?3.一部记录片在4个单位轮映,每一单位放映1场,有多少种轮映次序?【反思 】1. 排列数的定义2. 排列数公式及其全排列公式排列(2)导学案【学习目标 】 1熟练掌握排列数公式;2. 能运用排列数公式解决一些简单的应用问题.【重点难点 】1熟练掌握排列数公式;2. 能运用排列数公式解决一些简单的应用问题.【学法指导 】(预习教材P5 P10,找出疑惑之处)复习1:什么叫排列?排列的定义包括两个方面分别是 和 ;两个排列相同的条件是 相同, 也相同复习2:排列数公式: ()全排列数: .复习3 从5个不同元素中任取2个元素的排列数是 ,全部取出的排列数是 【教学过程 】(一)导入探究任务一:排列数公式应用的条件问题1: 从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法? 从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?新知:排列数公式只能用在从n个不同元素中取出m个元素的的排列数,对元素可能相同的情况不能使用.探究任务二:解决排列问题的基本方法问题2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?新知:解排列问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法当问题的反面简单明了时,可通过求差采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.(二)深入学习例1 (1)6男2女排成一排,2女相邻,有多少种不同的站法?(2)6男2女排成一排,2女不能相邻,有多少种不同的站法?(3)4男4女排成一排,同性者相邻,有多少种不同的站法?(4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?变式:某小组6个人排队照相留念(1) 若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(2) 若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(3) 若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(4) 若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?(5) 若分成两排照相,前排2人,后排4人,有多少种不同的排法?小结:对比较复杂的排列问题,应该仔细分析,选择正确的方法. 例2 用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数.(1)没有重复数字的四位偶数?(2)比1325大的没有重复数字四位数?变式:用0,1,2,3,4,5,6七个数字, 能组成多少个没有重复数字的四位奇数? 能被5整除的没有重复数字四位数共有多少个? 动手试试练1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行实验,有多少种不同的种植方法? 练2. 在3000至8000之间有多少个无重复数字的奇数?【当堂检测】1. 某农场为了考察3个水稻品种和5个小麦品种的质量,要在土质相同的土地上进行试验,应该安排的试验区共有 块.2. 某人要将4封不同的信投入3个信箱中,不同的投寄方法有 种.3. 用1,2,3,4,5,6可组成比500000大、且没有重复数字的自然数的个数是 .4. 现有4个男生和2个女生排成一排,两端不能排女生,共有 种不同的方法.5. 在5天内安排3次不同的考试,若每天至多安排一次考试,则不同的排法有 种.1.一个学生有20本不同的书.所有这些书能够以多少种不同的方式排在一个单层的书架上? 2.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法? 【反思 】1. 正确选择是分类还是分步的方法,分类要做到“不重不漏”,分步要做到“步骤完整.2.正确分清是否为排列问题满足两个条件:从不同元素中取出元素,然后排顺序.组合(1)导学案【学习目标 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算;.【重点难点 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算;【学法指导】(预习教材P21 P23,找出疑惑之处)复习1:什么叫排列?排列的定义包括两个方面,分别是 和 .复习2:排列数的定义:从 个不同元素中,任取 个元素的 排列的个数叫做从个元素中取出元素的排列数,用符号 表示复习3:排列数公式:= ()【教学过程 】(一)导入探究任务一:组合的概念问题:从甲,乙,丙3名同学中选出2名去参加一项活动,有多少种不同的选法?新知:一般地,从 个 元素中取出 个元素 一组,叫做从个不同元素中取出个元素的一个组合. 试试:试写出集合的所有含有2个元素的子集.反思:组合与元素的顺序 关,两个相同的组合需要 个条件,是 ;排列与组合有何关系? 探究任务二组合数的概念:从个 元素中取出个元素的 组合的个数,叫做从 个不同元素中取出个元素的组合数用符号 表示探究任务三 组合数公式 我们规定: (二)深入学习例1 甲、乙、丙、丁4个人,(1)从中选3个人组成一组,有多少种不同的方法?列出所有可能情况;(2)从中选3个人排成一排,有多少种不同的方法? 变式: 甲、乙、丙、丁4个足球队举行单循环赛:(1)列出所有各场比赛的双方;(2)列出所有冠亚军的可能情况.小结:排列不仅与元素有关,而且与元素的排列顺序有关,组合只与元素有关,与顺序无关,要正确区分排列与组合.例2 计算:(1); (2)变式:求证: 动手试试练1.计算: ; ; ; .练2. 已知平面内A,B,C,D这4个点中任何3个点都不在一条直线上,写出由其中每3点为顶点的所有三角形.练3. 学校开设了6门任意选修课,要求每个学生从中选学3门,共有多少种选法?【当堂检测 】1. 若8名学生每2人互通一次电话,共通 次电话2. 设集合,已知,且中含有3个元素,则集合有 个.3. 计算:= .4. 从2,3,5,7四个数字中任取两个不同的数相乘,有个不同的积;任取两个不同的数相除,有个不同的商,则:= .5.写出从中每次取3个元素且包含字母,不包含字母的所有组合 1.计算: ; ;2. 圆上有10个点: 过每2个点画一条弦,一共可以画多少条弦? 过每3点画一个圆内接三角形,一共有多少个圆内接三角形?、【反思 】1. 正确理解组合和组合数的概念2.组合数公式:或者: 组合(2)导学案【学习目标 】1. 掌握组合数的两个性质;2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题;【重点难点 】1. 掌握组合数的两个性质;2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题;【学法指导 】(预习教材P24 P25,找出疑惑之处)复习1:从 个 元素中取出 个元素 一组,叫做从个不同元素中取出个元素的一个组合;从 个 元素中取出 个元素的 组合的个数,叫做从 个不同元素中取出个元素的组合数用符号 表示.复习2: 组合数公式: 【教学过程 】(一)导入探究任务一:组合数的性质问题1:高二(6)班有42个同学 从中选出1名同学参加学校篮球队有多少种选法? 从中选出41名同学不参加学校篮球队有多少种选法? 上面两个问题有何关系?新知1:组合数的性质1:一般地,从n个不同元素中取出个元素后,剩下个元素因为从n个不同元素中取出m个元素的每一个组合,与剩下的n - m个元素的每一个组合一一对应,所以从n个不同元素中取出m个元素的组合数,等于从这n个元素中取出n - m个元素的组合数,即:试试:计算: 反思:若,一定有?若,一定有吗?问题2 从这n+1个不同元素中取出m个元素的组合数是 ,这些组合可以分为两类:一类含有元素,一类是不含有含有的组合是从这 个元素中取出 个元素与组成的,共有 个;不含有的组合是从这 个元素中取出 个元素组成的,共有 个从中你能得到什么结论?新知2 组合数性质2 +(二)深入学习例1(1)计算:;变式1:计算例2 求证:+变式2:证明:小结:组合数的两个性质对化简和计算组合数中用用处广泛,但在使用时要看清公式的形式. 例3解不等式. 练3 :解不等式: 动手试试练1.若,求的值练2. 解方程:(1)(2)【当堂检测 】1. 2. 若,则 3.有3张参观券,要在5人中确定3人去参观,不同方法的种数是 ;4. 若,则 ;5. 化简: .1. 计算: ; 2. 壹圆,贰圆,伍圆,拾圆的人民币各1张,一共可以组成多少种币值?3. 若,求的值【反思 】1. 组合数的性质1:2. 组合数性质2:+组合(3)导学案【学习目标 】1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【重点难点 】1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【学法指导 】(预习教材P27 P28,找出疑惑之处)复习1: 从 个 元素中取出 个元素的 组合的个数,叫做从 个不同元素中取出个元素的组合数,用符号 表示;从 个 元素中取出 ()个元素的 的个数,叫做从n个不同元素取出m元素的排列数,用符合 表示. 与关系公式是 复习2: 组合数的性质1: 组合数的性质2: 【教学过程 】(一)导入探究任务一:排列组合的应用问题:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问: 这位教练从17位学员中可以形成多少种学员上场方案? 如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事?新知:排列组合在实际运用中,可以同时使用,但要分清他们的使用条件:排列与元素的顺序有关,而组合只要选出元素即可,不要考虑元素的顺序.试试:平面内有10个点,以其中每2个点为端点的线段共有多少条?平面内有10个点,以其中每2个点为端点的有向线段多少条?反思:排列组合在一个问题中能同时使用吗?(二)深入学习例1 在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件. 有多少种不同的抽法? 抽出的3件中恰好有1件是次品的抽法有多少种? 抽出的3件中至少有1件是次品的抽法有多少种?变式:在200件产品中有2件次品,从中任取5件: 其中恰有2件次品的抽法有多少种? 其中恰有1件次品的抽法有多少种? 其中没有次品的抽法有多少种? 其中至少有1件次品的抽法有多少种?小结:对综合应用两个计数原理以及组合知识问题,思路是:先分类,后分步 .例2 现有6本不同书,分别求下列分法种数: 分成三堆,一堆3本,一堆2本,一堆1本; 分给3个人,一人3本,一人2本,一人1本; 平均分成三堆.变式:6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法? 例3 现有五种不同颜色要对如图中的四个部分进行着色,要求有公共边的两块不能用一种颜色,问共有几种不同的着色方法?变式:某同学邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法? 动手试试练1. 甲、乙、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度玻璃隔断安装与品牌授权合同
- 2025年度金融科技企业员工试工合作协议
- 2025年度高速公路服务区草坪绿化与旅客服务合同
- 2025年度草种研发与市场推广合作协议
- 2025年度社会组织劳动合同范本解读与应用4篇
- 个人财务规划的重要阶段计划
- 项目预算的合理编制与控制计划
- 课程设计与产品开发计划
- 管理者在变革中的关键作用计划
- 课堂生物教学创新策略计划
- 湖南株洲二中2022自主招生考试英语试卷试题(精校打印)
- 血透室护理质控
- 粤语课程设计
- 人美版四年级上册美术(全册)教案
- 《学前儿童健康教育(第2版)》全套教学课件
- 10S505 柔性接口给水管道支墩
- 移动宽带注销委托书模板需要a4纸
- 初一下册期末模拟物理质量检测试卷解析1
- 《教育向美而生-》读书分享课件
- 中海地产总部-员工考核手册
- 左卡尼汀在减轻高原反应中的应用
评论
0/150
提交评论