已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2008年全国硕士研究生入学统一考试数学三试题一、选择题:18小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)设函数在区间上连续,则是函数的( )跳跃间断点.可去间断点.无穷间断点.振荡间断点.(2)曲线段方程为,函数在区间上有连续的导数,则定积分等于( )曲边梯形面积. 梯形面积. 曲边三角形面积.三角形面积.(3)已知,则(A),都存在 (B)不存在,存在(C)不存在,不存在 (D),都不存在(4)设函数连续,若,其中为图中阴影部分,则( )(A) (B) (C) (D)(5)设为阶非0矩阵为阶单位矩阵若,则( )不可逆,不可逆.不可逆,可逆.可逆,可逆.可逆,不可逆. (6)设则在实数域上域与合同矩阵为( ). . (7)随机变量独立同分布且分布函数为,则分布函数为( ) . . . . (8)随机变量,且相关系数,则( ) . 二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)设函数在内连续,则 . (10)设,则.(11)设,则.(12)微分方程满足条件的解.(13)设3阶矩阵的特征值为1,2,2,E为3阶单位矩阵,则.(14)设随机变量服从参数为1的泊松分布,则.三、解答题:1523小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分)求极限.(16) (本题满分10分) 设是由方程所确定的函数,其中具有2阶导数且时.(1)求(2)记,求.(17) (本题满分11分)计算其中.(18) (本题满分10分)设是周期为2的连续函数,(1)证明对任意实数,有;(2)证明是周期为2的周期函数(19) (本题满分10分)设银行存款的年利率为,并依年复利计算,某基金会希望通过存款A万元,实现第一年提取19万元,第二年提取28万元,第n年提取(10+9n)万元,并能按此规律一直提取下去,问A至少应为多少万元? (20) (本题满分12分)设矩阵,现矩阵满足方程,其中,(1)求证;(2)为何值,方程组有唯一解;(3)为何值,方程组有无穷多解.(21)(本题满分10分)设为3阶矩阵,为的分别属于特征值特征向量,向量满足,证明(1)线性无关;(2)令,求.(22)(本题满分11分)设随机变量与相互独立,的概率分布为,的概率密度为,记(1)求;(2)求的概率密度(23) (本题满分11分)是总体为的简单随机样本.记,.(1)证 是的无偏估计量.(2)当时 ,求.2008年考研数学(三)真题解析一、选择题(1)【答案】【详解】 ,所以是函数的可去间断点(2)【答案】【详解】其中是矩形ABOC面积,为曲边梯形ABOD的面积,所以为曲边三角形的面积(3)【答案】【详解】,故不存在所以存在故选.(4)【答案】【详解】用极坐标得 所以 .(5)【答案】【详解】,.故均可逆(6)【答案】【详解】记,则,又,所以和有相同的特征多项式,所以和有相同的特征值.又和为同阶实对称矩阵,所以和相似由于实对称矩阵相似必合同,故正确.(7)【答案】【详解】.(8)【答案】 【详解】 用排除法. 设,由,知道正相关,得,排除、由,得 所以 所以. 排除. 故选择.二、填空题(9)【答案】1【详解】由题设知,所以因为 ,又因为在内连续,必在处连续所以 ,即.(10)【答案】【详解】,令,得所以 .(11)【答案】【详解】.(12)【答案】【详解】由,两端积分得,所以,又,所以.(13)【答案】3【详解】的特征值为,所以的特征值为,所以的特征值为,所以.(14)【答案】【详解】由,得,又因为服从参数为1的泊松分布,所以,所以,所以 .三、解答题(15) 【详解】方法一:方法二:(16) 【详解】(I) (II) 由上一问可知,所以 所以 .O 0.5 2 xD1D3 D2(17) 【详解】 曲线将区域分成两个区域和,为了便于计算继续对区域分割,最后为(18) 【详解】方法一:(I) 由积分的性质知对任意的实数,令,则所以 (II) 由(1)知,对任意的有,记,则. 所以,对任意的,所以是周期为2的周期函数.方法二:(I) 设,由于,所以为常数,从而有. 而,所以,即.(II) 由(I)知,对任意的有,记,则 , 由于对任意,所以 ,从而 是常数即有 所以是周期为2的周期函数.(19) 【详解】方法一:设为用于第年提取万元的贴现值,则故 设 因为 所以 (万元)故 (万元),即至少应存入3980万元.方法二:设第年取款后的余款是,由题意知满足方程, 即 (1)(1)对应的齐次方程 的通解为 设(1)的通解为 ,代入(1)解得 ,所以(1)的通解为 由,得 故至少为3980万元(20) 【详解】(I)证法一:证法二:记,下面用数学归纳法证明当时,结论成立当时,结论成立假设结论对小于的情况成立将按第1行展开得 故 证法三:记,将其按第一列展开得 ,所以 即 (II) 因为方程组有唯一解,所以由知,又,故由克莱姆法则,将的第1列换成,得行列式为所以 (III) 方程组有无穷多解,由,有,则方程组为此时方程组系数矩阵的秩和增广矩阵的秩均为,所以方程组有无穷多解,其通解为为任意常数(21)【详解】(I)证法一:假设线性相关因为分别属于不同特征值的特征向量,故线性无关,则可由线性表出,不妨设,其中不全为零(若同时为0,则为0,由可知,而特征向量都是非0向量,矛盾),又,整理得:则线性相关,矛盾. 所以,线性无关.证法二:设存在数,使得 (1)用左乘(1)的两边并由得 (2)(1)(2)得 (3)因为是的属于不同特征值的特征向量,所以线性无关,从而,代入(1)得,又由于,所以,故线性无关.(II) 记,则可逆,所以 .(22)【详解】 (I) (II)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤矿工程项目招投标委托
- 体育场馆租赁经营合同
- 仪器库房物资盘点制度
- 外企劳资管理实施办法
- 旅游开发项目投资指导
- 夏令营地活动安全保障协议
- 电子产品CEO聘用合同
- 机械制造厂房租赁
- 工厂门禁安装合同
- 医疗器械研发生产投标书
- 民政局离婚协议书范文模板标准版
- 2024年代工生产机密保护协议
- 2023-2024学年湖北省武汉市洪山区九年级(上)期末物理试卷(含答案)
- 2024年新人教版五年级数学下册《第4单元第7课时 最大公因数(1)》教学课件
- 品牌经理招聘面试题与参考回答(某大型集团公司)2024年
- 2024年江苏鑫邮投资发展集团限公司(国企业)公开招聘工作人员高频难、易错点500题模拟试题附带答案详解
- 二次函数专题知识点-常考(典型)题型-重难点题型(含详细答案)
- 彩钢板屋面拆除、更换屋面板施工方案改
- 高级管理招聘面试题及回答建议(某大型央企)2024年
- 汽车行业MES解决方案相关两份资料
- 身体评估-神经系统评估(健康评估课件)
评论
0/150
提交评论