



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习资料收集于网络,仅供参考 三角形的心三角形只有五种心 重心:三中线的交点,三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍; 垂心:三高的交点; 内心:三内角平分线的交点,是三角形的内切圆的圆心的简称; 外心:三中垂线的交点; 旁心:一条内角平分线与其它二外角平分线的交点.(共有三个.)是三角形的旁切圆的圆心的简称. 当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心.1三角形重心重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。 已知:ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。 证明:根据燕尾定理,SAOB=SAOC,又SAOB=SBOC,SAOC=SBOC,再应用燕尾定理即得AF=BF,命题得证。 重心的几条性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为(X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3 5、三角形内到三边距离之积最大的点。 重 心 三条中线定相交,交点位置真奇巧, 交点命名为“重心”,重心性质要明了, 重心分割中线段,数段之比听分晓; 长短之比二比一,灵活运用掌握好2三角形垂心的性质设ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、C的对边分别为a、b、c,p=(a+b+c)/2 1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外. 2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心; 3、 垂心H关于三边的对称点,均在ABC的外接圆上。 4、 ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AHHD=BHHE=CHHF。 5、 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一垂心组)。 6、 ABC,ABH,BCH,ACH的外接圆是等圆。 7、 在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则 AB/APtanB+ AC/AQtanC=tanA+tanB+tanC。 8、 三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。 9、 设O,H分别为ABC的外心和垂心,则BAO=HAC,ABH=OBC,BCO=HCA。 10、 锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。 11、 锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。 12、 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的重要条件是该点落在三角形的外接圆上。3三角形内心 定义在三角形中,三个角的角平分线的交点是这个三角形内切圆的圆心而三角形内切圆的圆心就叫做三角形的内心, 三角形内心的性质设ABC的内切圆为I(r),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2 1、三角形的三条角平分线交于一点,该点即为三角形的内心 2、三角形的内心到三边的距离相等,都等于内切圆半径r 3、r=S/p 4、在RtABC中,C=90,r=(a+b-c)/2 5、BIC=90+A/2 6、点O是平面ABC上任意一点,点I是ABC内心的充要条件是: a(向量OA)+b(向量OB)+c(向量OC)=向量0 7、点O是平面ABC上任意一点,点I是ABC内心的充要条件是: 向量OI=a(向量OA)+b(向量OB)+c(向量OC)/(a+b+c) 8、ABC中,A(x1,y1),B(x2,y2),C(x3,y3),那么ABC内心I的坐标是: (ax1/(a+b+c)+bx2/(a+b+c)+cx3/(a+b+c),ay1/(a+b+c)+by2/(a+b+c)+cy3/(a+b+c) 9、(欧拉定理)ABC中,R和r分别为外接圆为和内切圆的半径,O和I分别为其外心和内心,则OI2=R2-2Rr 10、(内角平分线分三边长度关系) ABC中,0为内心,A 、B、 C的内角平分线分别交BC、AC、AB于Q、P、R, 则BQ/QA=a/b, CP/PA=a/c, BR/RC=c/b.三角形外心定义三角形外接圆的圆心叫做三角形的外心 三角形外心的性质设ABC的外接圆为G(R),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2 1、三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心. 2、锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心在斜边上,与斜边中点重合. 3、GA=GB=GC=R. 3、BGC=2A,或BGC=2(180-A). 4、R=abc/4SABC. 5、点G是平面ABC上一点,那么点G是ABC外心的充要条件是: (向量GA+向量GB)向量AB= (向量GB+向量GC)向量BC=(向量GC+向量GA)向量CA=向量0. 6、点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是ABC外心的充要条件是: 向量PG=(tanB+tanC)向量PA+(tanC+tanA)向量PB+(tanA+tanB)向量PC)/2(tanA+tanB+tanC). 7、点G是平面ABC上一点,点P是平面ABC上任意一点,那么点G是ABC外心的充要条件是: 向量PG=(cosA/2sinBsinC)向量PA+(cosB/2sinCsinA)向量PB+(cosC/2sinAs
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 混凝土路面热天施工方案
- 梧州职业学院《行草创作(3)》2023-2024学年第二学期期末试卷
- 宁波卫生职业技术学院《地貌与第四纪地质学》2023-2024学年第二学期期末试卷
- 吉林艺术学院《建设项目投资与融资》2023-2024学年第二学期期末试卷
- 湖北数字化施工方案
- 江苏师范大学《秘书从业技能训练》2023-2024学年第一学期期末试卷
- 吉林外国语大学《播音学(一)》2023-2024学年第二学期期末试卷
- 湖北净化彩钢板施工方案
- 脱硫塔平台施工方案范本
- 武汉交通职业学院《河北医家学术思想与临床研究》2023-2024学年第二学期期末试卷
- 第6课《现代科技进步与人类社会发展》课件-高中历史统编版(2019)选择性必修二经济与社会生活
- CO变换工艺发展过程及趋势
- 北师大版数学六年级下册-总复习课件(精编版)
- 经济效益证明(模板)
- 设备检修登记表
- D建筑消防设施故障维修记录表
- 高等数学上册ppt课件完整版
- 青霉素过敏性休克抢救
- 应用型人才核心素养总体框架(模板)
- 新时期当好社会组织秘书长的若干思考课件
- 太阳能电池的特性完整课件
评论
0/150
提交评论