免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形的中位线教学设计 教学目标 1、由三角形的中线概念及性质入手,引导学生自由探究三角形的中位线概念和性质,在比较中构建新知。 2、引导学生在三角形中位线定理的应用情境中体验“一般性寓于特殊性之中”的哲学思想,学用发散思维的方法,提高学力水平。教学重点 三角形中位线的性质及应用。教学难点 把握问题实质以及知识的逻辑结构,发散思维,构建命题系列,提高学习效率。教学过程 一、回顾三角形的中线概念及性质 1、点D、E、F分别是ABC的三边BC、AC、AB的中点。 线段AD、BE、CF是ABC的中线。 2、三角形的三条中线交于一点G. 3、三角形的一条中线等分三角形的面积。 二、构建三角形的中位线概念,探究三角形中位线的性质 1、画图1-1 如图1-1,D、E、F分别是ABC的三边中点,连接DE、EF、DF。 A A F G E F E B D C E D C 图1-1 图1-2 2、比较图1-1、图1-2 比较线段DE、EF、DF与中线AD、BE、CF。 相同点:都是线段 不同点:DE、EF、DF的端点都是三角形边的中点,而AD、BE、CF一端点是三角形的顶点,另一端点是三角形边的中点。 3、建立概念 三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。 D、E是BC、AC的中点 DE是ABC的中位线.4、研究性质 A 如图1-3,把ADE绕点 E旋转180,得到CFE.(演示) D E F (2)请学生自己研究得到的图形的性质。 全班交流: B C 把ADE绕点E旋转180,得到CFE。 图1-3 则CFEADE EF=DE,A=ADE,CF=AD ABCF DBCF AD=DB CF=DB 四边形DBCF为平行四边形。 DFBC,且DF=BC DE=DF DE=BC (3)概括三角形中位线的性质: 三角形的中位线平行于第三边,并且等于第三边的一半。(板书) 如图1-4 DE是ABC的中位线. DEBC,DE=BC 三、练、议,体验三角形中位线的应用价值,提高发散思维水平和能力 A 练习1 如图1-5,D、E、F分别是ABC的三边AB、BC、AC的中点。 D F (1)DEF的周长与ABC的周长有什么关系? (2)DEF的面积与ABC的面积有什么关系? B E F 全班讨论: 图1-4 (1)由三角形中位线定理得DF=BC,EF=AB,DE=AC DEF的周长= ABC的周长 (2)由三角形中位线定理得ADEF、DBEF、DECF、由平行四边形的性质可得ADF、DBE、FEC、EFD全等、等积(或由三角形中位线定理直接证得四个三角形全等、等积)。 SADF=SABC 【设计意图:通过练习,加深对所学知识的理解,能较熟练的解决一些基本问题。】 练习2 (1)如图1-6,A、B两地 A B被池塘阻隔,怎样运用三角形中位 线定理来测量A、B两地间的距离? 图1-6 (小组研究后全班交流) 如图1-7,在池塘一侧选择能直 A C接到达AB两地的测点P,连接 PA、PB,分别取 PA、PB 的中点 D、E, D E量得 DE 的长. 由三角形中位线定理可知AB = 2DE,因而可求 A、B 两地的距离. P (2)若 D、E 两点间还有阻隔, 图1-7如何求 A、B 两地的距离呢? 【设计意图:通过练习,使学生在体会到三角形中位线性质在测量中的应用,同时也训练了学生严谨的思维品质和精确的语言表达能力。】 练习3 (1)如图1-8在四边形 ABCD 中,E、F、G、H分别是 AB、BC、CD、DA 的中点.求证:四边 形EFGH 是平行四边形. A H D (学生独立思考后,交流思维过程) 板书一种思路的证明过程 E G 连接 AC,在ADC 中 H、G 分别是 DA、DC 的中点。 B F C HG 是DAC 的中位线 图1-8 HGAC,HG =AC(三角形的中位线平行于第三边,并且等于它的一半 同理,EFAC,EF =AC. EFHG,EF = HG. 四边形EFGH是平行四边形. (一组对边平行并且相等的四边形是平行四边形) (2)若再连接BD,怎样证明四边形EFGH是平行四边形? (3)由“一般到特殊”展开联想,体验“一般性寓于特殊性之中”。由(1)知一般四边形具有“顺次连接四边的中点得到的四边形是平行四边形”的性质,我们可作哪些联想、猜想?进行“由一般四边形到特殊四边形”的联想、猜想: (4)观察图1-9中所得到的EFGH有没有特殊的?如何证明你的结论? 独立研究学生后,全班交流:顺次连接矩形各边中点所得到的 四边形是菱形;顺次连接等腰梯形各边中点所得到的四边形是菱形;顺次连接菱形各边中点所得到的四边形是矩形;顺次连接正 A H D E G A H D H E F B F C A D B F C A H D E G A H D E G B F C E G B F C A H D B C H F A D E G E G B C A H D B C F E G B F C 图1-9方形各边中点所得到的四边形是正方形。 全班研究命题:“顺次连接正方形各边中点所得到的四边形是正方形”的证明,并板书证明过程。 共同概括: 原四边形 ABCD 为 所得四边形 EFGH 矩形 菱形 等腰梯形 菱形 菱形 矩形 正方形 正方形 (5)逆向思维:是不是只有顺次连接矩形、等腰梯形、菱形、正方形各边的中点才能得到菱形、矩形和正方形呢? 师生共同分析后,进一步概括: 原四边形的对角线 顺次连接四边形各边中点所得到四边形 相等 菱形 互相 垂直矩形 相等且互相垂直 正方形 【设计意图:此题属拓展型题目,不只是让学生巩固和应用知识,而是为了使学生在探寻解题途径、应用新知的过程中,获得方法和经验以及探究的乐趣,并提高学习效益。】 四、师生共同小结 1、“一般性寓于特殊性之中” 2、要善于根据图形之间的内在联系进行联想、猜想,研究图形的性质时要抓住本质。 五、作业 A (一)必做题 E H 如图1-10,四边形ABCD中, B DACBD于O,且A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 62394:2024 EN Service diagnostic interface for consumer electronics products and networks - Implementation for ECHONET
- 淮阴师范学院《中国文化概论》2023-2024学年第一学期期末试卷
- 淮阴师范学院《音乐创作与改编》2023-2024学年第一学期期末试卷
- 淮阴师范学院《小学教育教学叙事研究》2022-2023学年第一学期期末试卷
- 音乐测评课件教学课件
- 淮阴师范学院《公共政策学》2023-2024学年第一学期期末试卷
- 淮阴工学院《食品质量管理1》2022-2023学年第一学期期末试卷
- 淮阴师范学院《电工电子技术》2022-2023学年期末试卷
- DB6110-T 54-2024《党政机关会务服务规范》
- DB4106T123-2024政务服务中心“有诉即办”服务规范
- 工业自动化系统集成项目验收方案
- 第一讲 伟大事业都始于梦想(课件)
- 管道补偿器安装检验记录
- 学校食堂出入库管理制度
- 限制被执行人驾驶令申请书
- 铝合金船的建造课件
- 边坡土石方开挖施工方案
- 八年级上册语文课后习题及答案汇编(部分不全)
- 玻璃厂应急预案
- 安全帽生产与使用管理规范
- 货车进入车间安全要求
评论
0/150
提交评论