平面几何竞赛之三角形的“五心”2.doc_第1页
平面几何竞赛之三角形的“五心”2.doc_第2页
平面几何竞赛之三角形的“五心”2.doc_第3页
平面几何竞赛之三角形的“五心”2.doc_第4页
平面几何竞赛之三角形的“五心”2.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平面几何竞赛之三角形的“五心”一、基本概念1、内心:与三角形所有边相切的圆叫做此三角形的内切圆,其圆心叫做此三角形的内心.内心是三角形三条内角平分线的交点.三角形的内心在三角形内部.内心有以下常用的性质:性质1:设I是ABC内一点,I为ABC内心的充要条件是:I到三角形三边的距离相等.性质2:设I是ABC内一点,AI所在直线交ABC 的外接圆于D,I为ABC内心的充要条件是:ID=DB=DC.性质3:设I是ABC内一点,I为ABC内心的充要条件是:BIC=900+A,AIC=900+B,AIB=900+C.证明:性质4:设I是ABC内一点,I为ABC内心的充要条件是:IBC、IAC、IAB的外心均在ABC的外接圆上.证明:性质5:设I为ABC内心,BC=a,AC=b,AB=c,I在BC、AC、AB边上的射影分别为D、E、F,内切圆的半径为r,令p=(a+b+c),则(1)ID=IE=IF=r,SABC=pr=;海伦公式推导:(2)r=;(3)abcr=pAIBICI.性质6:设I为ABC内心,BC=a,AC=b,AB=c,A的平分线交BC于K,交ABC 的外接圆于D,则=.例1如图,设ABC的外接圆O的半径为R,内心为I,B=600,AC,A的外角平分线交圆O于E,证明:(1)IO=AE,(2)2RIO+IA+ICc,求SABC:SBKC.(1999年四川省竞赛题) 【例8】 设OA,OB,OC是ABC的三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论