已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
声明:引用转载请注明来源于此处或,韩雪亮.“企业间关系与企业商业信用融资的实证研究”D暨南大学硕士论文,2012.面板数据中固定效应和随机效应的选择及其应用韩雪亮(暨南大学管理学院,广州510632)摘要:在面板数据中,固定效应模型和随机效应模型的选择问题一直存有很大争论。本文通过比较,认为具体研究中选择固定效应模型还是随机效应模型,应该结合研究需要,而不是Hausman检验结果。Hausman检验在某种程度上来说,是没有任何意义的,因为无论结果如何,选择固定效应模型总不会错。Hausman检验与Breusch-Pagan检验存在本质上的区别,不能因为Hausman检验结果拒绝随机效应模型而否定Breusch-Pagan检验结果。本文还通过一个实证分析,更直观的表达了这种思想。实证分析结果表明,尽管所选择的变量在整体上能够影响到企业商业信用融资,但不同行业内的企业商业信用融资受到的影响因素不同。关键词:固定效应;随机效应;Hausman检验;Breusch-Pagan检验;商业信用融资中图分类号:F064.1,F275.5 文献标识码:AFixed Effects Model and Random Effects Model Selection in Panel Data and its ApplicationHAN XueliangManagement School of Jinan University,Guangzhou510632Abstract:In panel data analysis, there has been arguing on fixed effects model and random effects model selection. In this paper, we compared these two models and consider that choose fixed effects model or random effects model should depend on your research need/theory, rather than Hausman test. To some extent, Hausman test doesnot work, since whatever the outcome, choose fixed effects model is always right. Like the difference between the fixed effects model and random effects model, there is essential difference between Hausman test and Breusch-Pagan test. We cannot reject the Breusch-Pagan test when Hausman test rejects the random effects model. We also use one empirical analysis to convey this opinion. The empirial analysis results show that, in general the selected variables do have effect on the dependent variable, but when come into the different industries, the effect is differ.Key words:Fixed Effects Model;Random Effects Model;Hausman Test;Breusch-Pagan Test;Trade Credit0引言面板数据(Panel Data)综合了时间序列数据和截面数据的特点,提供了更多与客观现实相关的信息,并控制了个体的异质性,增大了自由度和减小了变量间的多重共线性。相对于单纯的时间序列数据和截面数据而言,在动态分析、个体分析等方面面板数据都具有其无可比拟的优势。1因此,面板数据引发了学者们的广泛兴趣,并在原有的基础模型上衍生出一系列的模型。然而,无论是采用那一种模型,面临的一个最根本的问题就是“误差分解满足固定效应还是随机效应进行判断与检验”(张红星、贾彦东,2006)。2有关固定效应和随机效应的选择,国内外一直存有争论。在此背景下,大多数学者(尤其是在国内)对于这两种效应模型不慎理解,在做研究时,经常采用先做固定效应模型,然后再用同样的数据做随机效应模型,之后进行Hausman检验,最后根据Hausman检验的结果进行选择和解释。需要指出的是,这并不是一个合理的选择。即便是在统计上能够解释,就现实而言很难相符。本文接下来将就固定效应模型和随机效应模型的机理和Hausman检验的原理等加以阐释,并结合一个实证分析对此进行说明。1固定效应模型和随机效应模型3 4 5面板数据分析中常用的两种模型即固定效应模型(fixed effect model)和随机效应模型(random effect model),本文首先对这两个模型的基本原理进行解释。1.1固定效应模型固定效应模型的一般形式为:其中,代表因变量(DV),i表示个体,t表示时间;代表自变量的系数;代表自变量(IV);(i=1,2,3n)代表影响个体的未知项;代表误差项目。固定效应模型建立的初衷是检验那些随时间变化的变量对与因变量的影响,而一些不随时间变化而变化的变量被排斥在固定效应模型之外。6在假设上,与随机效应模型不同,固定效应模型尤其强调:(1)个体范围内的某些因素会影响结果,引起偏差;(2)那些不随时间而变化的变量对于个体而言是独一无二的,这些变量不应该与其他个体的特征相关。根据假设(1),应该剔除那些不随时间的变化而变化的自变量对因变量的影响,其估计的结果是净效应;根据假设(2),如果误差项是相关的,那么固定效应模型就不合适(因为推论未必正确)。此时就需要考虑其他效应模型(如随机效应模型)。Hausman检验的基本原理也是基于对假设(2)的检验,并没有考虑到假设(1)。1.2随机效应模型随机效应模型的一般表达形式为:其中,代表因变量(DV),i表示个体,t表示时间;代表自变量的系数;代表自变量(IV);(i=1,2,3n)代表影响个体的未知项;代表个体之间的差异;代表个体内部的差异。如果有足够的理由能够确信个体之间的不同会影响到因变量,那么就应该采用随机效应模型。在假设上,与固定效应模型不同,随机效应模型强调:(1)个体的误差与所预测的是不相关的;(2)解释变量之间不存在完全线性关系。在把变量引入到模型中上,相对于固定效应模型而言,随机效应模型允许那些不随时间变化而变化的自变量加入到模型之中。在应用随机效应模型时所遇到的一个难题就是,需要明确那些自变量能够影响或不能够影响到因变量。本文主张在模型设定初期,尽可能考虑更多的变量,以免因遗漏某一变量造成估计偏差。1.3固定效应模型和随机效应模型的比较从上述的分析可以发现,固定效应模型和随机效应模型之间最大的不同就在于其基本假设,即个体不随时间改变的变量是否与所预测的或自变量相关。8固定效应模型认为包含个体影响效果的变量是内生的,而与此相反,随机效应模型是假设全部的包含个体随机影响的回归变量是外生的(Mundlak,1978)。7在模型中变量的引入上,固定效应模型默认了那些不随时间变化而变化的自变量不会对因变量造成影响,因而不允许这类变量出现在模型之中;随机效应模型则认为表示某些个体特征的但不随时间变化而变化的自变量能够对因变量造成影响,允许这类变量引入到模型之中。在假定了解释变量是外生性的情况下,固定效应模型中的估计量是无偏的。与一阶差分法一样,固定效应通过一个变换,把非观察效应消除掉了,也正是其允许与任意时期内的解释变量随意相关,才导致任何不随时间变化而变化的解释变量也会随之消除。固定效应自由度问题:。此外,当面板数据中某一对象只有一个截面,则在固定效应模型中起不到作用。即,仅具有一时期的样本会被忽略,而造成耗损。当有足够的理由相信非观察效应与所有解释变量都无关时,随机效应模型则更为合理。理想的随机效应模型假设包含了所有的固定效应假设之外,又假定与所有时期任意解释变量无关。2 Hausman检验和Breusch-Pagan检验尽管有些学者指出,过分的区别固定效应和随机效应本身并不具有学者们所宣称的“重要意义”,一般情况下,都应该把个体视为是随机的(Mundlak,1978)。7然而,在实际应用中,对两种模型的选择依旧存在很大争议。有关模型选择的检验方法也层出不穷,但最基本的、通常的做法就是Hausman检验。需要进一步指出的是,Hausman检验并非总有效。比如,当模型中的关键自变量是不随时间的变化而变化时。如果有足够的理由或者客观情况下不得不首选随机效应模型时,在对所建立的模型估计后,就可以采用Breusch-Pagan检验进行补救。本文接下来讲对这两种检验方法进行讨论。2.1Hausman检验910Hausman检验构建的统计量为:H=(b-B)Var(b)-Var(B)-1(b-B)x2(k)其零假设为:优先选择随机效应模型(见Green, 2008, chapter 9)。Hausman检验的基本原理是:通过检验固定效应u_i与其他解释变量数是否相关,进而判断是该采用固定效应还是随机效应。其遵循的思想是,在u_i与其他解释变量数不相关的原假设下,用OLS估计的固定效应模型与用GLS估计的随机效应的模型得到的参数是一致的,只是用OLS估计的固定效应模型不具有效应;反之,当OLS一致时,GLS则不一定一致。在统计软件stata11.0中,Hausman检验很容易实现。在设定好面板和模型以后,首选做一个固定效应模型,并存储:xtreg y x1 x2,fe其中,y代表因变量,x1 x2代表自变量est store fe然后做一个随机效应模型,并存储:xtreg y x1 x2,re最后,输入Hausman检验命令:hausman fe re通过上述三步,stata11.0会自动输出Hausman检验结果。在结果中有如下值:probchi2 = ?在上述式子中,若“?”在设定的检验水平上是显著的(如,?chi2 = ?在上述式子中,若“?”在设定的检验水平上是显著的(如,?0.05),那么就可以认定采用随机效应是正确的,反之,则随机效应模型不如一般的OLS估计。尽管它并没有考虑到u_i与其他解释变量数的相关性,但Breusch-Pagan检验仍然可以用来作为模型选择优劣的标准之一。3实证分析及讨论为了说明在面板数据中是选择固定效应模型还是随机效应模型,本文以“研究中小企业间关系对其商业信用融资的影响”为例作进一步讨论。在样本选择中,在确保研究结果的稳定性和代表性的前提下,以最大样本为基准(新上市股票数和累计上市数两个方面考虑),从中小板市场初次选取了累积到2007年底的201家中小企业作为候选样本。之后,剔除掉了金融业(1家)和股票非正常的企业(4家),最终确定的样本为196家。(鉴于尚未公开发表,此处内容恕暂不提供。)3.1模型的选择从模型的设定,可以发现本文采用的是随机效应模型。其理由如下:一、一般情况下,都应该把个体视为是随机的(Mundlak,1978)。7本文认为作为个体的企业是随机的,企业自身的特征能够影响到企业商业信用的可得性;本文对于行业的划分是基于是否为工业企业这一标准,但即使在同一标准下的企业也有不同的特征(如规模等),这些特征能够影响到企业商业信用的可得性。二、模型中的关键某些关键变量是不随时间的变化而改变的。如,企业参与商协会的情况。针对某一个企业,鉴于客观情况不可能按照年份逐一获得其参与商协会的情况。即便是能够做到,在3年(2007-2009)内,也可能是不变的。若采用固定效应模型,则不能够检验到这一因素对企业获取商业信用融资的影响,而本文认为这是影响企业商业信用融资的关键变量之一。三、在所选取的样本中,从截面上来看,共计有196个截面;从时间上来看,仅3个时间点。即,样本数据为短面板数据。从统计学的角度来看,采用固定效应模型会损失很大的自由度。采用随机效应模型,则可以避免自由度的损失。3.2模型检验根据模型的设定,本文对模型的检验将采用Breusch-Pagan检验。通常情况下,许多作者在论文中采用两种效应(固定效应和随机效应)对模型进行估计,并进行Hausman检验,进而对得到的参数的不同略加解释,或者坚持认为固定效应更为合适(因为Hausman检验在大多数情况下都是“拒绝原假设”、迫使采用固定效应模型)。从理论上来说说,这种做法是不对的。这是因为固定效应模型和随机效应模型对于抽样的假设存有本质的区别,因而通过它们得到的结果之间不具有本质上的可比性。本文前面也曾指出,从某种程度上来说Hausman检验是没有任何意义的。这是因为,无论检验结果如何,采用固定效应都是对的。此外,还需要指出的是,即便是能够进行Hausman检验,若发生Hausman检验结果和Breusch-Pagan检验结果存在矛盾,也不能否认后者。这是因为,Breusch-Pagan检验与Hausman检验的出发点也不同,这二者在本质上同样不具备可比性。针对异方差和序列相关问题,随机效应模型本身就考虑到了异方差问题(体现在sigma_u2上,连玉君),异方差检验通常用在对固定效应模型的检验中;在短面板数据中,一般也不考虑序列相关问题,只有在包含了很长序列的面板数据中才考虑序列相关性(Baltagi,2005)。因此,出进行Breusch-Pagan检验外,本文不再做其他性质的检验。3.3估计结果及结论本文通过stata11.0作为工具,采用逐步回归的方法对模型的估计结果如下所示从上述随机效应模型估计结果来:(鉴于尚未公开发表,此处内容恕暂不提供。)在整体估计中,企业关联交易集中度对企业商业信用融资显著(在没有商协会,或者国家级以上商协会和市级以下商协会的影响下),显著水平为1%,r1、r2的系数分别为-0.473、0.0517和-0.487、0.0535;企业参与省级商协会对企业商业信用融资在10%的水平上是显著的,影响系数为0.0202(在不考虑参与其他商协会的情况下)。通过进一步分行业估计发现,企业关联交易集中度对企业商业信用融资的影响仅在工业行业内是显著的,在非工业行业内并不显著;企业参与商协会的情况在非工业行业内的影响是显著的,在工业行业内并不显著。Breusch-Pagan检验结果发现,随机效应模型要优于简单OLS估计。4结论本文首先分别对固定效应模型和随机效应模型、Hausam检验和Breusch-Pagan检验的假设、基本原理等,做了分析和对比,认为:一、固定效应模型和随机效应模型存在本质的区别,从其假设和对样本选择的理论假设来看,二者不具有可比性;二、Hausam检验和Breusch-Pagan检验同样不具有可比性,这两种检验方法的出发点不同。从某种程度上来说,Hausam检验是没有任何意义的。因为无论Hausam检验结果如何,采用固定效应模型总是没有错的。尽管Breusch-Pagan检验仅仅比较了固定效应模型和简单OLS估计之间的优劣,但仍然不失为对随机效应模型的检验的合理选择。三、虽然当前计量方法层出不穷,但对于具体的研究需要而言,没有更优,只有更合适。在具体的研究中,究竟是选择固定效应模型还是随机效应模型,应该着眼于具体的研究假设和客观需要,而不是追求方法上的完美。在本文的实证分析中,根据本文研究假设(企业个体是随机的)和模型估计中采用的数据特征(196个截面、3个时间点的短面板,某些关键变量为不随时间变化而变化的),选择了随机效应模型。在实证模型中,本文尽可能的控制了多个变量,包括企业自身的(诸如企业控股权情况、年龄、规模、资金缺口、声誉等)和外部的宏观环境(企业所在省份的人均GDP),在尽可能的范围内避免了因遗漏重要变量带来的估计偏差。实证研究结果发现,虽然在整体上企业关联交易集中度和参与省级商协会都能够对企业获取商业信用融资产生影响(分别在1%和10%的水平上是显著的),但具体到工业和非工业行业内,二者的影响显著水平存在明显差别。企业关联交易集中度仅在工业行业对企业商业信用融资有显著影响(显著水平1%),参与省级商协会仅在非工业行业对企业商业信用融资有显著影响(显著水平1%)。参考文献1 Hsiao. Analysis of P anel Da ta , Cambridge: University Press, 2003.2 张红星、贾彦东. Panel Data 模型设定的新思路J. 数量经济技术经济研究,2006(6),p148-154.3 Econometric analysis / William H. Greene. 6th ed., Upper Saddle River, N.J. : Prentice Hall, 2008.4 Data Analysis Using Stata/ Ulrich Kohler, Frauke Kreuter, 2nd ed., Stata Press, 2009.5 杰弗里M伍德里奇著、费剑平译校.计量经济学导论M. 北京:中国人民大学出版社, 2010.6 Kohler, Ulrich, Frauke Kreuter, Data Analysis Using Stata, 2nd ed., p.245.7 Mundlak. On the Pooling of T ime Ser ies and Cr oss Section Dat a,0 Econometr ica, 46: 6985, 1978a.8 Green. Cochrane handbook for systematic reviews of interventions version 5.0. 0 updated February 2008, p.183.9 Jerry A. Hausman and William E. Taylor. Panel Data and Unobservable Individual Effects, E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数据保护守则3篇
- 安装工程合同的工程变更申请3篇
- 工业电暖设备采购招标3篇
- 推广活动服务合同3篇
- 新版实验室员工保密协议3篇
- 推广活动采购协议3篇
- 房屋买卖合同贷款的房产登记问题3篇
- 安全骑行电动车的决心3篇
- 安徽新版离婚协议书格式3篇
- 排水沟承包合同范本两份3篇
- GB/T 5267.1-2023紧固件电镀层
- 道路运输企业两类人员安全考核题库题库(1020道)
- 兰州大学-PPT 答辩4
- 单人脱口秀剧本3分钟(通用5篇)
- 化学反应工程知到章节答案智慧树2023年浙江工业大学
- 浅谈幼儿有效体能训练策略研究 论文
- 材料费用的归集和分配
- 水利三类人员安全员b证考试题库及答案
- 中考物理复习初高中知识衔接试题含答案
- GB/T 25974.3-2010煤矿用液压支架第3部分:液压控制系统及阀
- GB/T 244-2008金属管弯曲试验方法
评论
0/150
提交评论