山东省高中数学《2.4等比数列》第1课时课件 新人教A版必修5.ppt_第1页
山东省高中数学《2.4等比数列》第1课时课件 新人教A版必修5.ppt_第2页
山东省高中数学《2.4等比数列》第1课时课件 新人教A版必修5.ppt_第3页
山东省高中数学《2.4等比数列》第1课时课件 新人教A版必修5.ppt_第4页
山东省高中数学《2.4等比数列》第1课时课件 新人教A版必修5.ppt_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课标要求 1 理解等比数列定义 会用定义判断等比数列 2 掌握等比数列的通项公式 3 掌握等比中项的定义并能解决相应问题 核心扫描 1 等比数列的判定 重点 2 等比数列的通项公式及应用 重点 难点 3 等比中项及应用 第1课时等比数列的概念及通项公式 2 4等比数列 等比数列的概念如果一个数列从第 项起 每一项与它的前一项的比等于 那么这个数列就叫做等比数列 这个常数叫做等比数列的 通常用字母q表示 q 0 自学导引 1 常数列一定是等比数列吗 提示 不一定 当常数列为非零常数列时 此数列为等比数列 否则不是 2 同一常数 公比 等比中项等比数列的通项公式已知等比数列 an 的首项为a1 公比为q q 0 则数列 an 的通项公式为an 2 等比中项 3 a1qn 1 推导等比数列的通项公式有哪些方法 提示 等比数列的通项公式的推导有下列三种方法 归纳法 由等比数列的定义可以得到a2 a1q a3 a2q a1q2 a4 a3q a1q3 a5 a4q a1q4 归纳得an a1qn 1 迭代法 因为 an 是等比数列 所以an an 1q an 2q q an 2q2 an 3q q2 an 3q3 a1qn 1 所以an a1qn 1 等比数列定义的理解 1 由于等比数列的每一项都可能作分母 故每一项均不能为零 因此q也不可能为零 3 如果一个数列不是从第2项起 而是从第3项或第4项起每一项与它的前一项之比是同一个常数 那么这个数列不是等比数列 名师点睛 1 等比中项的理解 1 当a b同号时 a b的等比中项有两个 当a b异号时 没有等比中项 2 在一个等比数列中 从第2项起 每一项 有穷数列的末项除外 都是它的前一项与后一项的等比中项 3 a g b成等比数列 等价于 g2 ab a b均不为0 可以用它来判断或证明三数是否成等比数列 等比数列的通项公式 1 已知首项a1和公比q 可以确定一个等比数列 2 在公式an a1qn 1中有an a1 q n四个量 已知其中任意三个量 可以求得第四个量 2 3 题型一等比数列通项公式的应用 在等比数列 an 中 1 a4 2 a7 8 求an 2 a2 a5 18 a3 a6 9 an 1 求n 思路探索 解答本题可将条件转化为关于基本元素a1与q的方程组 求出a1和q 再表示其他量 例1 由a1q a1q4 18 知a1 32 由an a1qn 1 1 知n 6 a1和q是等比数列的基本量 只要求出这两个基本量 其他量便可迎刃而解 此类问题求解的通法是根据条件 建立关于a1和q的方程组 求出a1和q 在等比数列 an 中 已知a5 a1 15 a4 a2 6 求an 变式1 等比数列 an 的前三项的和为168 a2 a5 42 求a5 a7的等比中项 思路探索 本题主要考查等比数列的基本运算和等比中项的求法 题型二等比中项的应用 例2 已知b是a与c的等比中项 求证 ab bc是a2 b2与b2 c2的等比中项 证明 b是a和c的等比中项 b2 ac 且a b c均不为零 ab bc 2 a2b2 2ab2c b2c2 a3c 2a2c2 ac3 又 a2 b2 b2 c2 a2b2 a2c2 b4 b2c2 a3c a2c2 a2c2 ac3 a3c 2a2c2 ac3 ab bc 2 a2 b2 b2 c2 又 a2 b2 0 b2 c2 0 ab bc是a2 b2与b2 c2的等比中项 变式2 已知数列 an 满足a1 1 an 1 2an 1 1 证明 数列 an 1 是等比数列 2 求数列 an 的通项公式 审题指导 1 变形递推公式 按等比数列的定义证明 2 求出 an 1 的通项公式 即可求出an 规范解答 1 证明法一因为an 1 2an 1 所以an 1 1 2 an 1 由a1 1 知a1 1 0 从而an 1 0 所以数列 an 1 是等比数列 6分 题型三等比数列的判定 例3 数列 an 1 是等比数列 6分 2 解由 1 知 an 1 是以a1 1 2为首项 2为公比的等比数列 所以an 1 2 2n 1 2n 即an 2n 1 12分 判断一个数列是否是等比数列的常用方法是 1 定义法 2 等比中项法an 12 anan 2 n n 且an 0 an 为等比数列 3 通项公式法an a1qn 1 a1 0且q 0 an 为等比数列 已知数列 an 的前n项和sn 2an 1 求证 an 是等比数列 并求出通项公式 证明 sn 2an 1 sn 1 2an 1 1 an 1 sn 1 sn 2an 1 1 2an 1 2an 1 2an an 1 2an 又 s1 2a1 1 a1 a1 1 0 又由an 1 2an知an 0 an 1 2n 1 2n 1 变式3 通过观察图形特征 帮助学生发现图形所表示数的规律和特点 一方面 培养学生发现图形特征和规律的能力 另一方面 在单纯发现数列的规律比较困难的情况下 可以借助图形帮助解决 反之 在观察图形特征比较困难的情况下 也可以考虑从观察数列特点入手进行解决 图 1 是一个边长为1的正三角形 将每边三等分 以中间一段为边向外作正三角形 并擦去中间一段 得图 2 如此继续下去 得图 3 试求第n个图形的边长和周长 方法技巧数形结合思想在等比数列中的应用 示例 思路分析 关键是找到周长与n的关系 即找到由周长所构成的数列的通项公式 解设第n个图形的边长为an 要计算第n个图形的周长 只需计算第n个图形的边数 第1个图形的边数为3 因为从第

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论