高中精品-数学:求递推数列通项公式的十种策略例析.doc_第1页
高中精品-数学:求递推数列通项公式的十种策略例析.doc_第2页
高中精品-数学:求递推数列通项公式的十种策略例析.doc_第3页
高中精品-数学:求递推数列通项公式的十种策略例析.doc_第4页
高中精品-数学:求递推数列通项公式的十种策略例析.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.3递推数列一、基本知识简述1有关概念:我们在研究数列an时,如果任一项an与它的前一项(或几项)间的关系可以用一个公式来表示,则此公式就称为数列的递推公式。通过递推公式给出的数列,一般我们也称之为递推数列。主要有以下几种方法:(1) 构造法:通过构造特殊的数列(一般为等差数列或等列),利用特殊数列的通项求递推数列的通项.(2) 迭代法:将递推式适当变形后,用下标较小的项代替某些下标较大的项,在一般项和初始之间建立某种联系,从而求出通项.(3) 代换法:包括代数代换、三角代换等(4) 待定系数法:先设定通项的基本形式,再根据题设条件求出待定的系数。3.思想策略:构造新数列的思想。4.常见类型: 类型:(一阶递归)类型II:分式线性递推数列:二、例题:例1:,求通项 分析:构造辅助数列, ,则求通项过程中,多次利用递推的思想方法以及把一般数列转化为等差、等比数列去讨论,从而求出了通项公式。一般形式 已知,其中p,q,a为常数,求通项同类变式已知数列满足,且,求通项分析:(待定系数),构造数列使其为等比数列,即,解得求得归纳:类型:(一阶递归)其特例为:(1)时, 利用累加法,将,+,+,各式相加,得 +(n2)(2)时,;利用累乘法,(3)时,解题方法:利用待定系数法构造类似于“等比数列”的新数列法1:(常数变易法) 设 则,从而亦即数列是以为首项,公比为p的等比数列,从而可得:, 法2:利用成等比数列求出,再利用迭代或迭另法求出法3:由,则可得 ,从而又可得 即(4)时,两边同除以例2:数列的前n项和为,且,求数列的通项公式.例3:数列中,且,求数列的通项公式.提示归纳:类型II:分式线性递推数列:练习:1.已知数列中,是其前项和,并且,设数列,求证:数列是等比数列;设数列,求证:数列是等差数列;求数列的通项公式及前项和。分析:由于b和c中的项都和a中的项有关,a中又有S=4a+2,可由S-S作切入点探索解题的途径解:(1)由S=4a,S=4a+2,两式相减,得S-S=4(a-a),即a=4a-4a(根据b的构造,如何把该式表示成b与b的关系是证明的关键,注意加强恒等变形能力的训练)a-2a=2(a-2a),又b=a-2a,所以b=2b 已知S=4a+2,a=1,a+a=4a+2,解得a=5,b=a-2a=3 由和得,数列b是首项为3,公比为2的等比数列,故b=32当n2时,S=4a+2=2(3n-4)+2;当n=1时,S=a=1也适合上式综上可知,所求的求和公式为S=2(3n-4)+2说明:1本例主要复习用等差、等比数列的定义证明一个数列为等差,等比数列,求数列通项与前项和。解决本题的关键在于由条件得出递推公式。2解综合题要总揽全局,尤其要注意上一问的结论可作为下面论证的已知条件,在后面求解的过程中适时应用练习:2.设二次方程x-x+1=0(nN)有两根和,且满足6-2+6=3(1)试用表示a;例9数列中,且满足求数列的通项公式;设,求;设=,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由。解:(1)由题意,为等差数列,设公差为,由题意得,.(2)若,时,故(3)若对任意成立,即对任意成立,的最小值是,的最大整数值是7。即存在最大整数使对任意,均有说明:本例复习数列通项,数列求和以及有关数列与不等式构建新数列巧解递推数列竞赛题递推数列是国内外数学竞赛命题的“热点”之一,由于题目灵活多变,答题难度较大。本文利用构建新数列的统一方法解答此类问题,基本思路是根据题设提供的信息,构建新的数列,建立新数列与原数列对应项之间的关系,然后通过研究新数列达到问题解决之目的。其中,怎样构造新数列是答题关键。1 求通项求通项是递推数列竞赛题的常见题型,这类问题可通过构建新数列进行代换,使递推关系式简化,这样就把原数列变形转化为等差数列、等比数列和线性数列等容易处理的数列,使问题由难变易,所用的即换元和化归的思想。例1、数列中,。求。(1981年第22届IMO预选题)分析 本题的难点是已知递推关系式中的较难处理,可构建新数列,令,这样就巧妙地去掉了根式,便于化简变形。解:构建新数列,使则 , ,即化简得 ,即 数列 是以2为首项,为公比的等比数列。 即 2 证明不等式这类题一般先通过构建新数列求出通项,然后证明不等式或者对递推关系式先进行巧妙变形后再构建新数列,然后根据已经简化的新数列满足的关系式证明不等式。例2、设, ,求证:。(1990年匈牙利数学奥林匹克试题)分析 利用待证的不等式中含有及递推关系式中含有这两个信息,考虑进行三角代换,构建新数列,使,化简递推关系式。证明:易知,构建新数列,使,则 ,又 , ,从而 因此,新数列是以为首项,为公比的等比数列。考虑到当时,有 。所以,注:对型如 ,都可采用三角代换。3 证明是整数这类题把递推数列与数论知识结合在一起,我们可以根据题目中的信息,构建新数列,找到新的递推关系式直接解决,或者再进行转化,结合数论知识解决。例3、设数列满足, 求证: 。(中学数学教学参考2001年第8期第53页,高中数学竞赛模拟试题)分析 直接令,转化为证明 证明:构建新数列,令则 ,代入 整理得 从而 于是 由已知,由上式可知,依次类推, ,即。例4、设r为正整数,定义数列如下: , 求证:。(1992年中国台北数学奥林匹克试题)分析 把条件变形为比较与 前的系数及与 的足码,考虑到另一项为,等式两边同乘以,容易想到构新数列,使。证明:由已知得构建新数列,则, 又 | | ,从而 。4 解决整除问题一般通过构建新数列求出通项,再结合数论知识解决,也可用数学归纳法直接证明。例5、设数列满足,对一切,有,求所有被11整除的的一切n值。(1990年巴尔干地区数学奥林匹克试题)分析 变形递推关系式为,就容易想到怎样构建新数列了。解:由已知构建新数列 则, 从而,当时,由于被11整除,因而也被11整除。所以,所求n值为,8,及的一切自然数。5 证明是完全平方数这类题初看似乎难以入手,但如能通过构建新数列求出通项,问题也就迎刃而解了。例6、设数列和满足,且 求证:是完全平方数。(2000年全国高中联赛加试题)分析 先用代入法消去和,得,如果等式中没有常数项6,就可以利用特征根方法求通项,因此可令,易求得。证明:由式得, 代入得化为构建新数列,且,由特征方程 得两根,所以 当,1时,有解得:则 则因为 为正偶数,所以,是完全平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论