已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018版高考数学大一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、范围、最值问题试题 理 新人教版基础巩固题组(建议用时:40分钟)一、选择题1.设抛物线y28x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是()A. B.2,2C.1,1 D.4,4解析Q(2,0),设直线l的方程为yk(x2),代入抛物线方程,消去y整理得k2x2(4k28)x4k20,由(4k28)24k24k264(1k2)0,解得1k1.答案C2.(2017石家庄模拟)已知P为双曲线C:1上的点,点M满足|1,且0,则当|取得最小值时点P到双曲线C的渐近线的距离为()A. B. C.4 D.5解析由0,得OMPM,根据勾股定理,求|MP|的最小值可以转化为求|OP|的最小值,当|OP|取得最小值时,点P的位置为双曲线的顶点(3,0),而双曲线的渐近线为4x3y0,所求的距离d,故选B.答案B3.已知椭圆C的方程为1(m0),如果直线yx与椭圆的一个交点M在x轴上的射影恰好是椭圆的右焦点F,则m的值为()A.2 B.2 C.8 D.2解析根据已知条件得c,则点(,)在椭圆1(m0)上,1,可得m2.答案B4.若双曲线1(a0,b0)的渐近线与抛物线yx22有公共点,则此双曲线的离心率的取值范围是()A.3,) B.(3,)C.(1,3 D.(1,3)解析依题意可知双曲线渐近线方程为yx,与抛物线方程联立消去y得x2x20.渐近线与抛物线有交点,80,求得b28a2,c3a,e3.答案A5.(2016丽水一模)斜率为1的直线l与椭圆y21相交于A,B两点,则|AB|的最大值为()A.2 B. C. D.解析设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为yxt,由消去y,得5x28tx4(t21)0,则x1x2t,x1x2.|AB|x1x2|,当t0时,|AB|max.答案C二、填空题6.已知双曲线1(a0,b0)的一条渐近线方程是yx,它的一个焦点与抛物线y216x的焦点相同,则双曲线的方程为_.解析由条件知双曲线的焦点为(4,0),所以解得a2,b2,故双曲线方程为1.答案17.已知动点P(x,y)在椭圆1上,若A点坐标为(3,0),|1,且0,则|的最小值是_.解析0,.|2|2|2|21,椭圆右顶点到右焦点A的距离最小,故|min2,|min.答案8.(2017平顶山模拟)若双曲线x21(b0)的一条渐近线与圆x2(y2)21至多有一个公共点,则双曲线离心率的取值范围是_.解析双曲线的渐近线方程为ybx,则有1,解得b23,则e21b24,e1,1e2.答案(1,2三、解答题9.如图,椭圆E:1(ab0)的离心率是,点P(0,1)在短轴CD上,且1.(1)求椭圆E的方程;(2)设O为坐标原点,过点P的动直线与椭圆交于A,B两点.是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由.解(1)由已知,点C,D的坐标分别为(0,b),(0,b).又点P的坐标为(0,1),且1,于是解得a2,b.所以椭圆E方程为1.(2)当直线AB的斜率存在时,设直线AB的方程为ykx1,A,B的坐标分别为(x1,y1),(x2,y2).联立得(2k21)x24kx20.其判别式(4k)28(2k21)0,所以,x1x2,x1x2.从而,x1x2y1y2x1x2(y11)(y21)(1)(1k2)x1x2k(x1x2)12.所以,当1时,23.此时,3为定值.当直线AB斜率不存在时,直线AB即为直线CD,此时213,故存在常数1,使得为定值3.10.(2016浙江卷)如图,设椭圆y21(a1).(1)求直线ykx1被椭圆截得的线段长(用a,k表示);(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.解(1)设直线ykx1被椭圆截得的线段为AM,由得(1a2k2)x22a2kx0.故x10,x2,因此|AM|x1x2|.(2)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|AQ|.记直线AP,AQ的斜率分别为k1,k2,且k1,k20,k1k2.由(1)知|AP|,|AQ|,故,所以(kk)1kka2(2a2)kk0.由于k1k2,k1,k20得1kka2(2a2)kk0,因此1a2(a22),因为式关于k1,k2的方程有解的充要条件是1a2(a22)1,所以a.因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1a,由e得,所求离心率的取值范围是.能力提升题组(建议用时:25分钟)11.(2016湖南师大附中月考)设双曲线C:1(a0,b0)的一条渐近线与抛物线y2x的一个交点的横坐标为x0,若x01,则双曲线C的离心率e的取值范围是()A. B.(,)C.(1,) D.解析不妨联立yx与y2x的方程,消去y得x2x,由x01知1,即1,故e22,又e1,所以1e,故选C.答案C12.(2017河南省八市质检)已知双曲线1(a0,b0)的离心率为2,它的两条渐近线与抛物线y22px(p0)的准线分别交于A,B两点,O为坐标原点.若AOB的面积为,则抛物线的准线方程为()A.x2 B.x2C.x1 D.x1解析因为e2,所以c2a,ba,双曲线的渐近线方程为yx,又抛物线的准线方程为x,联立双曲线的渐近线方程和抛物线的准线方程得A,B,在AOB中,|AB|p,点O到AB的距离为,所以p,所以p2,所以抛物线的准线方程为x1,故选D.答案D13.(2017绵阳诊断)若点O和点F分别为椭圆1的中点和左焦点,点P为椭圆上的任一点,则的最小值为_.解析点P为椭圆1上的任意一点,设P(x,y)(3x3,2y2),依题意得左焦点F(1,0),(x,y),(x1,y),x(x1)y2x2x.3x3,x,612,即612,故最小值为6.答案614.(2017衡水中学高三联考)已知椭圆C:1(ab0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x4y60与圆x2(yb)2a2相切.(1)求椭圆C的方程;(2)已知过椭圆C的左顶点A的两条直线l1,l2分别交椭圆C于M,N两点,且l1l2,求证:直线MN过定点,并求出定点坐标;(3)在(2)的条件下求AMN面积的最大值.解(1)由题意,得即C:y21.(2)由题意得直线l1,l2的斜率存在且不为0.A(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中考冲刺个人决心书
- 中秋晚会来宾致辞范文(10篇)
- 中学生竞选班长演讲稿
- 中班家访小结
- 密度应用课件教学课件
- 2025年高考语文复习知识清单第十章作文专题10议论文写作课内素材积累(学生版+解析)
- 渝长一标段动火作业方案
- 超声雾化课件教学课件
- 三年级数学计算题专项练习汇编及答案集锦
- 维修保证金协议书(2篇)
- 数据分析与挖掘系统服务合作协议
- 多元化和包容性的领导方式
- 【盒马鲜生生鲜类产品配送服务问题及优化建议分析10000字(论文)】
- 数学学习的跨学科融合
- 小学-信息技术试题及答案
- 中小学校本课程规划方案
- 应急救援装备产业园项目建议书
- 《政务处分法》VS《纪律处分条例》讲稿
- 新概念英语青少版入门 A-Unit-1课件(共37张)
- 生鲜乳收购许可证申请表
- 幼儿园:中班社会《桌子底下的动物园》
评论
0/150
提交评论