(新课标)高中数学 第一章 解三角形教学设计 新人教A版必修5.doc_第1页
(新课标)高中数学 第一章 解三角形教学设计 新人教A版必修5.doc_第2页
(新课标)高中数学 第一章 解三角形教学设计 新人教A版必修5.doc_第3页
(新课标)高中数学 第一章 解三角形教学设计 新人教A版必修5.doc_第4页
(新课标)高中数学 第一章 解三角形教学设计 新人教A版必修5.doc_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(新课标)2015-2016学年高中数学 第一章 解三角形教学设计 新人教a版必修5从容说课本章主要学习了正弦定理和余弦定理、应用举例以及实习作业正弦定理、余弦定理是反映三角形边、角关系的重要定理利用正弦定理、余弦定理,可以将三角形中的边的关系与角的关系进行相互转化,许多几何问题也可以转化为解三角形的问题来研究本节课是人教版数学必修五第一章解三角形的全章复习.教学重点 1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.2.三角形各种类型的判定方法;三角形面积定理的应用.3.正、余弦定理与三角形的有关性质的综合运用教学难点 定理及有关性质的综合运用教具准备 多媒体投影仪三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形确良; 2.三角形各种类型的判定方法;3.三角形面积定理的应用.二、过程与方法通过引导学生分析,解答典型例题,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系教学过程导入新课师 本章我们共学习了哪些内容?生 本章我们学习了正弦定理与余弦定理.师 你能讲出正弦定理、余弦定理的具体内容吗?生 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即;余弦定理: a2=b2+c2-2bccosa,b2=a2+c2-2accosb,c2=b2+a2-2bacosc;.师 很好!哪位同学来说说运用正弦定理、余弦定理可以解决哪些类型的问题?生 正弦定理可以解决以下两类问题:(1)已知两角和一边解三角形;(2)已知两边及其中一边的对角解三角形.余弦定理可以解决以下两类问题:(1)已知三边解三角形;(2)已知两边及其夹角解三角形.生 老师,我来补充.利用正弦定理的解题的类型(1)在有解时只有一解,类型(2)可有解、一解和无解;利用余弦定理的解题的两种类型有解时只有一解.师 very good!除了以上这些,我们还学习了什么?生 除了正弦定理、余弦定理我们还学习了三角形面积公式:c,利用它我们可以解决已知两边及其夹角求三角形的面积.师 你说的非常完善,你是我们全班同学学习的榜样.希望我们全班同学都向他学习.推进新课多媒体投影解斜三角形时可用的定理公式适用类型备注余弦定理a2=b2+c2-2bccosab2=a2+c2-2accosbc2=b2+a2-2bacosc(1) 已知三边(2)已知两边及其夹角类型(1)(2)有解时只有一解正弦定理(3)已知两角和一边(4)已知两边及其中一边的对角类型(3)在有解时只有一解,类型(4)可有解、一解和无解三角形面积公式sbcsina= acsinb=absinc(5)已知两边及其夹角生 老师,我也来补充.利用正弦定理、余弦定理我们还可以解决实际生活中的一些问题:有关测量距离、高度、角度的问题师 看来同学们对解三角形这一章掌握得都不错下面,我们来看一下例题与练习例题剖析【例】在abc中,若sinasinb,则a与b的大小关系为_.生 这个题目以前做过的,a与b的大小关系不定师 对吗?生 我认为不对我以前做过的题目中没有“在abc中”这个条件(其他学生一致认可)师 那本题应该怎么做呢?生 我觉得答案应该是ab,但是理由我说不上来生 我来说因为在abc中,由正弦定理得,所以a =2rsina,b=2rsinb.又因为sinasinb,所以ab又因为在三角形中,大边对大角,所以ab师 好,你解得非常正确【例】在abc中,若abc的面积为s,且2s=(a+b)2-c2,求tanc的值师 拿到题目你怎么考虑,从哪里下手?生 利用三角形的面积公式,代入已知条件2s=(a+b)2-c2中,再化简.师 用面积公式s= bcina=acsinb=absinc中的哪一个呢?生 用哪一个都可以吧.生 不对,应该先化简等式右边,得(a+b)2-c2=a2+2ab+b2-c2,出现了a与b的乘积:ab,而2abcosc=a2+b2-c2,因此面积公式应该用s=absinc,代入等式得absinc=a2+b2+2ab-c2=2ab-2abcosc.化简得tan =2从而有师 思路非常清晰,请同学们思考本题共涉及到了哪些知识点?生 正弦定理、余弦定理与三角形面积公式生 还有余切的二倍角公式师 你能总结这类题目的解题思路吗?生 拿到题目不能盲目下手,应该先找到解题切入口师 对,你讲得很好生 正弦定理、余弦定理都要试试【例3】 将一块圆心角为120,半径为20 cm的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径oa上,或让矩形一边与弦ab平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值.师 本题是应用题,怎么处理?生 由实际问题抽象出数学模型,找到相应的数学知识来解决.分析:这是一个如何下料的问题,从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.解:按图(1)的裁法:矩形的一边op在oa上,顶点m在圆弧上,设moa=,则|mp|=20sin,|op|=20cos,从而s=400sincos=200sin2,即当时,smax=200.按图(2)的裁法:矩形的一边pq与弦ab平行,设moq=,在moq中,oqm=90+30=120,由正弦定理,得|mq|=.又因为|mn|=2|om|sin(60-),=40sin(60-),所以s=|mq|mn|=sinsin(60-)=-cos60-cos(2-60)=cos(2-60)-cos60.所以当=30时,s max=.由于200,所以用第二种裁法可裁得面积最大的矩形,最大面积为cm2.评注:正弦定理、余弦定理在测量(角度、距离)、合理下料、设计规划等方面有广泛应用.从解题过程来看,关键是要找出或设出角度,实质是解斜三角形,将问题涉及的有关量集中在某一个或者几个三角形中,灵活地运用正弦定理、余弦定理来加以解决.【例4】如果一个三角形的三边是连续的三个自然数,求所有这些三角形中的最大角的度数(精确到0.1)师 已知什么,要求什么?生(齐答)已知三角形的三边,要求三角形中的角师 怎么处理呢?生用正弦定理或余弦定理实现三角形中边与角的转化,可是三条边的值不知道啊生条件中三角形的三边是连续的三个自然数,那么我们可以设这三个连续的自然数为n-1,n,n+1,最大的角为,则.师 接下来怎么做呢?生 因为cos是0,180内的减函数,所以要求的最大值即求cos的最小值师cos的最小值怎么求呢?生 因为cos,从而有-1n-11n2.又因为n为自然数,所以当n=3时,(cos)min=-,所以的最大值为104.5(教师用多媒体投影)解:设这三个连续的自然数为n-1,n,n+1,最大的角为,则.因为cos是0,180内的减函数,所以要求的最大值即求cos的最小值,且cos,从而有-1n-11n2因此,当n=3时,(cos)min=-,所以的最大值为104.5师 下面我们来看一组练习多媒体投影1.在abc中,若a=30,b=45,c =6,则a等于()a.b.c.d.2.在abc中,若a =7,b =4,c =5,则abc的面积为(精确到0.)()a7b8.2c10.3d9.83.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离d1与第二辆车与第三辆车的距离d2之间的关系为()a.d1d2b.d1=d2c.d1d2d.大小确定不了4.在abc中,若acota=bcotb,则abc是_三角形5.在异面直线a,b上有两点m、n,ef是直线a,b的公垂线段,若em,ef,fn,mn,则异面直线a,b所成的角为_(精确到1)练习题答案:1.c2.d3.c4.等腰5.70课堂小结同学们本节课你的收获是什么?生 正弦定理、余弦定理都是联系三角形边和角的关系式.生 凡是可用正弦定理的时候,都可以用余弦定理;当关系式中有边的平方项时,可以考虑余弦定理.生 已知两边一对角求解三角形时用余弦定理讨论二次方程,更容易判断是无解、一解还是两解的问题.生 利用正弦定理和余弦定理解决几何问题的关键还是在于找出图形中的边角关系,然后假设有关的边和角,利用正弦定理和余弦定理建立边或角的关系式.生 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.其基本步骤是:(1)分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);(2)建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解;(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.布置作业1.已知锐角三角形的三边长分别为2、3、x,则x的取值范围是_2.在abc中,已知tana=,tanb=,试求最长边与最短边的比3.某人坐在火车上看风景,他看见远处有一座宝塔在与火车前进方向成30角的直线上,1分钟后,他看见宝塔在与火车前进方向成45角的直线上,设火车的速度是100 km/h,求宝塔离开铁路线的垂直距离答案:1.(,)2.解:因为tana=,tanb=,所以因为0a45,0b45,所以a +b = 45所以,所以最长边与最短边的比为.解:如图,设宝塔在c点,先看时的位置为a,再看时的位置为b,由题意知bac=45-30=15,ab=(km),ac =,所以c点到直线ab的距离为d=acsin30=(+1)(km)板书设计本章复习例1 例3例2 例4 (投影区)备课资料解三角形三角形的三条边和三个内角是三角形的六个基本元素已知其中的三个基本元素(至少有一个是边)求其余的基本元素叫做解三角形1.直角三角形的解法因为直角三角形中有一个是直角,例如abc中,c90,角a、b、c的对边分别是a、b、c那么利用以下关系式:(1)a+b=90;(2)a 2b 2=c 2;(3)a=csina=ccosbbtana;(4)b=ccosa=csinb=acxtana可分四种情况来解直角三角形(1)已知斜边和一锐角;(2)已知一条直角边和一锐角;(3)已知一斜边和一直角边;(4)已知两条直角边2.斜三角形的解法在一个三角形中,如果没有一个角是直角,那么这个三角形叫做斜三角形斜三角形的解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论