




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
不等式的基本性质教学目标(一)教学知识点1探索并掌握不等式的基本性质;2理解不等式与等式性质的联系与区别(二)能力训练要求通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力(三)情感与价值观要求通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与交流教学重点探索不等式的基本性质,并能灵活地掌握和应用教学难点能根据不等式的基本性质进行化简教学方法类推探究法即与等式的基本性质类似地探究不等式的基本性质教具准备投影片两张第一张:(记作12 A)第二张:(记作12 B)教学过程创设问题情境,引入新课师我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗?生记得等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式师不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证新课讲授1不等式基本性质的推导师等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法生353+25+232523+a5+a3a5a所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变师很好不等式的这一条性质和等式的性质相似下面继续进行探究生35325235所以,在不等式的两边都乘以同一个数,不等号的方向不变生不对如353(2)5(2)所以上面的总结是错的师看来大家有不同意见,请互相讨论后举例说明生如343343343(3)4(3)3()4()3(5)4(5)由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变师非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导生当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变师因此,大家可以总结得出性质2和性质3,并且要学会灵活运用2用不等式的基本性质解释的正确性师在上节课中,我们知道周长为l的圆和正方形,它们的面积分别为和,且有存在,你能用不等式的基本性质来解释吗?生416根据不等式的基本性质2,两边都乘以l 2得 3例题讲解将下列不等式化成“xa”或“xa”的形式:(1)x51;(2)2x3;(3)3x9生(1)根据不等式的基本性质1,两边都加上5,得x1+5即x4;(2)根据不等式的基本性质3,两边都除以2,得x;(3)根据不等式的基本性质2,两边都除以3,得x3说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否4议一议投影片(12 A)讨论下列式子的正确与错误(1)如果ab,那么a+cb+c;(2)如果ab,那么acbc;(3)如果ab,那么acbc;(4)如果ab,且c0,那么师在上面的例题中,我们讨论的是具体的数字,这种题型比较简单,因为要乘以或除以某一个数时就能确定是正数还是负数,从而能决定不等号方向的改变与否在本题中讨论的是字母,因此首先要决定的是两边同时乘以或除以的某一个数的正、负本题难度较大,请大家全面地加以考虑,并能互相合作交流生(1)正确ab,在不等式两边都加上c,得a+cb+c;结论正确同理可知(2)正确(3)根据不等式的基本性质2,两边都乘以c,得acbc,所以正确(4)根据不等式的基本性质2,两边都除以c,得 所以结论错误师大家同意这位同学的做法吗?生不同意师能说出理由吗?生在(1)、(2)中我同意他的做法,在(3)、(4)中我不同意,因为在(3)中有ab,两边同时乘以c时,没有指明c的符号是正还是负,若为正则不等号方向不变,若为负则不等号方向改变,若c=0,则有ac=bc,正是因为c的不明确性,所以导致不等号的方向可能是变、不变,或应改为等号而结论acbc只指出了其中一种情况,故结论错误在(4)中存在同样的问题,虽然c0,但不知c是正数还是负数,所以不能决定不等号的方向是否改变,若c0,则有,若 c0,则有,而他只说出了一种情况,所以结果错误师通过做这个题,大家能得到什么启示呢?生在利用不等式的性质2和性质3时,关键是看两边同时乘以或除以的是一个什么性质的数,从而确定不等号的改变与否师非常棒我们学习了不等式的基本性质,而且做过一些练习,下面我们再来研究一下等式和不等式的性质的区别和联系,请大家对比地进行生不等式的基本性质有三条,而等式的基本性质有两条区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况且不等式的基本性质1和等式的基本性质1相类似课堂练习1将下列不等式化成“xa”或“xa”的形式(1)x12 (2)x生解:(1)根据不等式的基本性质1,两边都加上1,得x3(2)根据不等式的基本性质3,两边都乘以1,得x 2已知xy,下列不等式一定成立吗?(1)x6y6;(2)3x3y;(3)2x2y解:(1)xy,x6y6不等式不成立;(2)xy,3x3y不等式不成立;(3)xy,2x2y不等式一定成立投影片(12 B)3设ab,用“”或“”号填空(1)a+1 b+1;(2)a3 b3;(3)3a 3b;(4) ;(5) ;(6)a b分析:ab根据不等式的基本性质1,两边同时加上1或减去3,不等号的方向不变,故(1)、(2)不等号的方向不变;在(3)、(4)中根据不等式的基本性质2,两边同时乘以3或除以4,不等号的方向不变;在(5)、(6)中根据不等式的基本性质3,两边同时乘以或1,不等号的方向改变解:(1)a+1b+1;(2)a3b3;(3)3a3b;(4);(5);(6)ab课时小结1本节课主要用类推的方法探索出了不等式的基本性质2利用不等式的基本性质进行简单的化简或填空课后作业习题12活动与探究1比较a与a的大小解:当a0时,aa;当a=0时,a=a;当a0时,aa说明:解决此类问题时,要对字母的所有取值进行讨论2有一个两位数,个位上的数字是a,十位上的数是b,如果把这个两位数的个位与十位上的数对调,得到的两位数大于原来的两位数,那么a与b哪个大哪个小?解:原来的两位数为10b+a调换后的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025铝合金门窗制作合同示范文本
- 2025年度合同管理流程规范
- 深圳市工程供货合同(30篇)
- 2025实习生合同协议书样本
- 股权转让及股权激励协议v1
- 二零二五的债权转让协议书范例
- 个人租车协议书样本
- 二零二五版监护人协议书的内容
- office格式合同样本
- 云南省购房合同样本
- GB/T 20424-2025重有色金属精矿产品中有害元素的限量规范
- 2025年兰考三农职业学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 2025电动自行车集中充电设施第2部分:充换电服务信息交换
- 输油管道安全培训
- 2025美国急性冠脉综合征(ACS)患者管理指南解读课件
- 统编历史七年级下册(2024版)第7课-隋唐时期的科技与文化【课件】f
- 2025年河南省高校毕业生“三支一扶”招募1100人高频重点模拟试卷提升(共500题附带答案详解)
- 2025年国家林业局西北林业调查规划设计院招聘4人历年高频重点模拟试卷提升(共500题附带答案详解)
- 桥梁检测报告模板
- 2025年浪潮数字企业技术有限公司招聘笔试参考题库含答案解析
- 课时精讲14-物质的聚集状态与晶体的常识(学生版)
评论
0/150
提交评论