




免费预览已结束,剩余15页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IGBT驱动器的选择 (2008-11-19 11:55:32) 标签:杂谈 IGBT驱动器的选择冯菁(华中光电技术研究所湖北武汉 430074)摘 要:随着电力电子技术的发展,IGBT 以其优异的性能已经取代BJT 广泛应用于航空航天,工业控制, 家用电子消费领域。在IGBT 的应用中, 根据系统要求的整体性能, 针对不同的IGBT 特性选取合适的驱动器是至关重要的, 它不仅影响了IGBT 的动态性能, 同时也影响系统的成本和可靠性。根据IGBT 对驱动电路的要求,就其中常用3 种不同驱动电路及选择时注意事项作了分析,使IGBT 的应用更广泛。关键词:IGBT 驱动器1 确定IGBT门极容量在设计和选购IGBT 驱动器之前,必须首先知道IGBT 的门极负荷Q,这是一个十分重要的参数,但在IGBT 的技术参数中生产厂家一般并不直接给出,而需要我们借助其它参数得到。IGBT 具有MOSFET 的输入级,在IGBT的技术资料中往往有一个参数Ciss,一般我们把它叫作输入电容,该电容的测试往往是在UGS=0,UOS=25V,f=1MHz 的情况下进行,由于密勒效应, 该值往往比在UGS= O V 时要小,根据实践经验,IGBT 的输入电容一般满足下面的公式Cin5Ciss一般Simens 和 Eupec 公司的IGBT 满足上述公式。知道了IGBT 的输入电容Cin,门极的负荷可以由下面公式得到Q=oidt= Cin U。 U 代表门极的驱动电压, 大多数的IGBT 开通电压+15V,关断电压-5V,因而U= 2 0 V , 如应用十分广泛的E X B 8 4 1 系列。高电压、大电流IGBT 往往开通关断均为15V,因而 U= 3 0 V 。2 开关频率确定开关频率的大小不仅影响系统的控制精度,而且影响系统的整体性能,如运行效率,噪声指标。开关频率是所有电力电子变换器的一个重要参数。根据IGBT 的门极容量,储存在IGBT 输入电容中的能量可以计算得到每个脉冲周期栅极充放电各一次,因而驱动一只IGBT 的功率为:f 为开关频率。驱动器的平均输出电流Iout可以这样得到:P=Iout * U 比较上面两式Q=Iout / f 驱动器的平均电流在数据文档可以找到,则IGBT的最大允许开关频率可以得到: 。3 门极驱动电阻Rg的选取IGBT 的开关时间是由驱动器对IGBT 的输入电容的充放电来控制, 增加门极输出电流,IGBT 开通时间和关断时间会相应缩短,开关损耗也会降低, Rg主要是用来限制门极输出的降值电流, Rg可由下式确定:Rg = U / IpeakIpeak一般可以在驱动器数据文档中找到。有些情况下,充放电峰值电流不同,门极电阻可以分别选取。4 IGBT驱动器的比较选择4.1 光电耦合和变压器耦合式比较光电耦合隔离式采用直流电源,输出脉冲宽度可调。通过检测集电极电压实现过电流保护。具有使用方便稳定性好的优点。缺点是双侧均采用电源,电路复杂。比如EXB841驱动器,光电耦合器输入与输出之间耐压一般较低为交流2500V,但实际使用中设备承受力不符合其条件,给使用带来限制。另外,一旦IGBT 烧坏,驱动器受到损坏给维修带来不便且不经济。变压器耦合隔离式不用专设的电源,线路简单, 输入输出间耐压高, 成本低、响应快.缺点是IGBT 关断期间得不到持续的反向门极电压,抗干扰能力差,且输出脉冲宽度不可调,不能实现过电流保护,并且由于漏感的存在使绕组的绕制工艺复杂容易出现振荡。4.2 IGBT 驱动器选择目前市场上可见的驱动器:光电耦合隔离驱动器有日本富士EXB841,国内落木源电子KA101,日本英达HR065等。变压器隔离式驱动器有美国Unitrode公司UC3724-3725系列,还有专用的用来驱动一个桥臂上2个IGBT的美国IR公司的IR2110及国内落木源电子的KD303,还有德国西门子公司的SKH121等。可供选用的范围很广,应用方便。但使用时应注意过电流问题, 比如EXB841 系列驱动器,采用ERA34-10 型快速二极管, 导通电压为3V , 反向耐压采用与IGBT 相同的等级.可以实现自身过电流保护,但若IGBT 过电流对其寿命是有影响的。解决办法是: 反串稳压管, 限制IGBT 的电流为200A,使工作稳定可靠且电路简单;采用电流传感器进行直接限流.上述几种驱动器由窄脉冲过电流无法限制,应采用别的措施,在此不一一论述。5 结语使用时应根据主电路的结构,了解各种驱动器的特性,使选择时减少盲目性,让电路既合理又简单。目前开关电源大多采用IGBT,其直流对地短路的可能性小,因此不用采用多的过电流措施。重点应放在防止发生直通现象。若IGBT 应用到变频中,采用光电耦合隔离式驱动器较合适。IGBT的有关保护问题时间:2007-08-21 来源: 作者:杨斌文 胡浩 张建 点击:1389 字体大小:【大 中 小】 摘要:全面论述了IGBT的过流保护、过压保护与过热保护的有关问题,并从实际应用中总结出各种保护方法,这些方法实用性强,保护效果好。1 引言 IGBT(绝缘栅双极性晶体管)是一种用MOS来控制晶体管的新型电力电子器件,具有电压高、电流大、频率高、导通电阻小等特点,因而广泛应用在变频器的逆变电路中。但由于IGBT的耐过流能力与耐过压能力较差,一旦出现意外就会使它损坏。为此,必须但对IGBT进行相关保护 本文从实际应用出发,总结出了过流、过压与过热保护的相关问题和各种保护方法,实用性强,应用效果好。2 过流保护 生产厂家对IGBT提供的安全工作区有严格的限制条件,且IGBT承受过电流的时间仅为几微秒(SCR、GTR等器件承受过流时间为几十微秒),耐过流量小,因此使用IGBT首要注意的是过流保护。产生过流的原因大致有:晶体管或二极管损坏、控制与驱动电路故障或干扰等引起误动、输出线接错或绝缘损坏等形成短路、输出端对地短路与电机绝缘损坏、逆变桥的桥臂短路等。 对IGBT的过流检测保护分两种情况:(1)驱动电路中无保护功能。这时在主电路中要设置过流检测器件。对于小容量变频器,一般是把电阻R直接串接在主电路中,如图1(a)所示,通过电阻两端的电压来反映电流的大小;对于大中容量变频器,因电流大,需用电流互感器TA(如霍尔传感器等)。电流互感器所接位置:一是像串电阻那样串接在主回路中,如图1(a)中的虚线所示;二是串接在每个IGBT上,如图1(b)所示。前者只用一个电流互感器检测流过IGBT的总电流,经济简单,但检测精度较差;后者直接反映每个IGBT的电流,测量精度高,但需6个电流互感器。过电流检测出来的电流信号,经光耦管向控制电路输出封锁信号,从而关断IGBT的触发,实现过流保护。图1 IGBT的过流检测(2)驱动电路中设有保护功能。如日本英达公司的HR065、富士电机的EXB840844、三菱公司的M57962L等,是集驱动与保护功能于一体的集成电路(称为混合驱动模块),其电流检测是利用在某一正向栅压Uge下,正向导通管压降Uce(ON)与集电极电流Ie成正比的特性,通过检测Uce(ON)的大小来判断Ie的大小,产品的可靠性高。不同型号的混合驱动模块,其输出能力、开关速度与du/dt的承受能力不同,使用时要根据实际情况恰当选用。 由于混合驱动模块本身的过流保护临界电压动作值是固定的(一般为710V),因而存在着一个与IGBT配合的问题。通常采用的方法是调整串联在IGBT集电极与驱动模块之间的二极管V的个数,如图2(a)所示,使这些二极管的通态压降之和等于或略大于驱动模块过流保护动作电压与IGBT的通态饱和压降Uce(ON)之差。图2 混合驱动模块与IGBT过流保护的配合 上述用改变二极管的个数来调整过流保护动作点的方法,虽然简单实用,但精度不高。这是因为每个二极管的通态压降为固定值,使得驱动模块与IGBT集电极c之间的电压不能连续可调。在实际工作中,改进方法有两种:(1)改变二极管的型号与个数相结合。例如,IGBT的通态饱和压降为2.65V,驱动模块过流保护临界动作电压值为7.84V时,那么整个二极管上的通态压降之和应为7.84-2.65=5.19V,此时选用7个硅二极管与1个锗二极管串联,其通态压降之和为0.77+0.31=5.20V(硅管视为0.7V,锗管视为0.3V),则能较好地实现配合(2)二极管与电阻相结合。由于二极管通态压降的差异性,上述改进方法很难精确设定IGBT过流保护的临界动作电压值 如果用电阻取代12个二极管,如图2(b),则可做到精确配合。 另外,由于同一桥臂上的两个IGBT的控制信号重叠或开关器件本身延时过长等原因,使上下两个IGBT直通,桥臂短路,此时电流的上升率和浪涌冲击电流都很大,极易损坏IGBT 为此,还可以设置桥臂互锁保护,如图3所示。图中用两个与门对同一桥臂上的两个IGBT的驱动信号进行互锁,使每个IGBT的工作状态都互为另一个IGBT驱动信号可否通过的制约条件,只有在一个IGBT被确认关断后,另一个IGBT才能导通,这样严格防止了臂桥短路引起过流情况的出现。图3 IGBT桥臂直通短路保护3 过压保护 IGBT在由导通状态关断时,电流Ic突然变小,由于电路中的杂散电感与负载电感的作用,将在IGBT的c、e两端产生很高的浪涌尖峰电压uce=L dic/dt,加之IGBT的耐过压能力较差,这样就会使IGBT击穿,因此,其过压保护也是十分重要的。过压保护可以从以下几个方面进行:(1)尽可能减少电路中的杂散电感。作为模块设计制造者来说,要优化模块内部结构(如采用分层电路、缩小有效回路面积等),减少寄生电感;作为使用者来说,要优化主电路结构(采用分层布线、尽量缩短联接线等),减少杂散电感。另外,在整个线路上多加一些低阻低感的退耦电容,进一步减少线路电感。所有这些,对于直接减少IGBT的关断过电压均有较好的效果。(2)采用吸收回路。吸收回路的作用是;当IGBT关断时,吸收电感中释放的能量,以降低关断过电压。常用的吸收回路有两种,如图4所示。其中(a)图为充放电吸收回路,(b)图为钳位式吸收回路。对于电路中元件的选用,在实际工作中,电容c选用高频低感圈绕聚乙烯或聚丙烯电容,也可选用陶瓷电容,容量为2 F左右。电容量选得大一些,对浪涌尖峰电压的抑制好一些,但过大会受到放电时间的限制。电阻R选用氧化膜无感电阻,其阻值的确定要满足放电时间明显小于主电路开关周期的要求,可按RT/6C计算,T为主电路的开关周期。二极管V应选用正向过渡电压低、逆向恢复时间短的软特性缓冲二极管。(3)适当增大栅极电阻Rg。实践证明,Rg增大,使IGBT的开关速度减慢,能明显减少开关过电压尖峰,但相应的增加了开关损耗,使IGBT发热增多,要配合进行过热保护。Rg阻值的选择原则是:在开关损耗不太大的情况下,尽可能选用较大的电阻,实际工作中按Rg=3000/Ic 选取。图4 吸收回路 除了上述减少c、e之间的过电压之外,为防止栅极电荷积累、栅源电压出现尖峰损坏IGBT,可在g、e之间设置一些保护元件,电路如图5所示。电阻R的作用是使栅极积累电荷泄放,其阻值可取4.7k;两个反向串联的稳压二极管V1、V2。是为了防止栅源电压尖峰损坏IGBT。图5 防栅极电荷积累与栅源电压尖峰的保护4 过热保护 IGBT 的损耗功率主要包括开关损耗和导通损耗,前者随开关频率的增高而增大,占整个损耗的主要部分;后者是IGBT控制的平均电流与电源电压的乘积。由于IGBT是大功率半导体器件,损耗功率使其发热较多(尤其是Rg选择偏大时),加之IGBT的结温不能超过125,不宜长期工作在较高温度下,因此要采取恰当的散热措施进行过热保护。 散热一般是采用散热器(包括普通散热器与热管散热器),并可进行强迫风冷。散热器的结构设计应满足:Tj=P(Rjc+Rcs+Rsa)Tjm式中TjIGBT的工作结温P损耗功率Rjc结壳热阻Rcs壳散热器热阻Rsa散热器环境热阻TjmIGBT的最高结温 在实际工作中,我们采用普通散热器与强迫风冷相结合的措施,并在散热器上安装温度开关。当温度达到7580时,通过SG3525的关闭信号停止PMW 发送控制信号,从而使驱动器封锁IGBT的开关输出,并予以关断保护。IGBT高压大功率驱动和保护电路的应用研究2008-5-24电源开发网电源开发资源-可免费申请的专业杂志列表高频开关电源设计中的电磁兼容性问题研究SG3524与SG3525的功能特点及软起动功能的比特种单片开关电源模块的电路设计UC3842应用于电压反馈电路中的探讨电容基础知识电阻知识电感知识好书推荐:现代高频开关电源实用技术DC-DC模块TPS54310的SPICE模型的建立与应用0 引言 IGBT在以变频器及各类电源为代表的电力电子装置中得到了广泛应用。IGBT集双极型功率晶体管和功率MOSFET的优点于一体,具有电压控制、输入阻抗大、驱动功率小、控制电路简单、开关损耗小、通断速度快和工作频率高等优点。 但是,IGBT和其它电力电子器件一样,其应用还依赖于电路条件和开关环境。因此,IGBT的驱动和保护电路是电路设计的难点和重点,是整个装置运行的关键环节。 为解决IGBT的可靠驱动问题,国外各IGBT生产厂家或从事IGBT应用的企业开发出了众多的IGBT驱动集成电路或模块,如国内常用的日本富士公司生产的EXB8系列,三菱电机公司生产的M579系列,美国IR公司生产的IR21系列等。但是,EXB8系列、M579系列和IR21系列没有软关断和电源电压欠压保护功能,而惠普生产的HCLP一316J有过流保护、欠压保护和1GBT软关断的功能,且价格相对便宜,因此,本文将对其进行研究,并给出1700V,200300A IGBT的驱动和保护电路。1 IGBT的工作特性 IGBT是一种电压型控制器件,它所需要的驱动电流与驱动功率非常小,可直接与模拟或数字功能块相接而不须加任何附加接口电路。IGBT的导通与关断是由栅极电压UGE来控制的,当UGE大于开启电压UGE(th)时IGBT导通,当栅极和发射极间施加反向或不加信号时,IGBT被关断。 IGBT与普通晶体三极管一样,可工作在线性放大区、饱和区和截止区,其主要作为开关器件应用。在驱动电路中主要研究IGBT的饱和导通和截止两个状态,使其开通上升沿和关断下降沿都比较陡峭。2 IGBT驱动电路要求 在设计IGBT驱动时必须注意以下几点。 1)栅极正向驱动电压的大小将对电路性能产生重要影响,必须正确选择。当正向驱动电压增大时,IGBT的导通电阻下降,使开通损耗减小;但若正向驱动电压过大则负载短路时其短路电流IC随UGE增大而增大,可能使IGBT出现擎住效应,导致门控失效,从而造成IGBT的损坏;若正向驱动电压过小会使IGBT退出饱和导通区而进入线性放大区域,使IGBT过热损坏;使用中选12VUGE18V为好。栅极负偏置电压可防止由于关断时浪涌电流过大而使IGBT误导通,一般负偏置电压选一5V为宜。另外,IGBT开通后驱动电路应提供足够的电压和电流幅值,使IGBT在正常工作及过载情况下不致退出饱和导通区而损坏。 2)IGBT快速开通和关断有利于提高工作频率,减小开关损耗。但在大电感负载下IGBT的开关频率不宜过大,因为高速开通和关断时,会产生很高的尖峰电压,极有可能造成IGBT或其他元器件被击穿。 3)选择合适的栅极串联电阻RG和栅射电容CG对IGBT的驱动相当重要。RG较小,栅射极之间的充放电时间常数比较小,会使开通瞬间电流较大,从而损坏IGBT;RG较大,有利于抑制dvcedt,但会增加IGBT的开关时间和开关损耗。合适的CG有利于抑制dicdt,CG太大,开通时间延时,CG太小对抑制dicdt效果不明显。 4)当IGBT关断时,栅射电压很容易受IGBT和电路寄生参数的干扰,使栅射电压引起器件误导通,为防止这种现象发生,可以在栅射间并接一个电阻。此外,在实际应用中为防止栅极驱动电路出现高压尖峰,最好在栅射间并接两只反向串联的稳压二极管,其稳压值应与正负栅压相同。3 HCPL-316J驱动电路3.1 HCPL-316J内部结构及工作原理 HCPL-316J的内部结构如图1所示,其外部引脚如图2所示。 从图1可以看出,HCPL-316J可分为输入IC(左边)和输出IC(右边)二部分,输入和输出之间完全能满足高压大功率IGBT驱动的要求。 各引脚功能如下: 脚1(VIN+)正向信号输入; 脚2(VIN-)反向信号输入; 脚3(VCG1)接输入电源; 脚4(GND)输入端的地; 脚5(RESERT)芯片复位输入端; 脚6(FAULT) 故障输出,当发生故障(输出正向电压欠压或IGBT短路)时,通过光耦输出故障信号; 脚7(VLED1+)光耦测试引脚,悬挂; 脚8(VLED1-)接地; 脚9,脚10(VEE)给IGBT提供反向偏置电压; 脚11(VOUT)输出驱动信号以驱动IGBT; 脚12(VC)三级达林顿管集电极电源; 脚13(VCC2)驱动电压源; 脚14(DESAT) IGBT短路电流检测; 脚15(VLED2+)光耦测试引脚,悬挂; 脚16(VE)输出基准地。 其工作原理如图1所示。若VIN+正常输入,脚14没有过流信号,且VCC2-VE=12v即输出正向驱动电压正常,驱动信号输出高电平,故障信号和欠压信号输出低电平。首先3路信号共同输入到JP3,D点低电平,B点也为低电平,50DMOS处于关断状态。此时JP1的输入的4个状态从上至下依次为低、高、低、低,A点高电平,驱动三级达林顿管导通,IGBT也随之开通。 若IGBT出现过流信号(脚14检测到IGBT集电极上电压=7V),而输入驱动信号继续加在脚1,欠压信号为低电平,B点输出低电平,三级达林顿管被关断,1DMOS导通,IGBT栅射集之间的电压慢慢放掉,实现慢降栅压。当VOUT=2V时,即VOUT输出低电平,C点变为低电平,B点为高电平,50DMOS导通,IGBT栅射集迅速放电。故障线上信号通过光耦,再经过RS触发器,Q输出高电平,使输入光耦被封锁。同理可以分析只欠压的情况和即欠压又过流的情况。32驱动电路设计 驱动电路及参数如图3所示。 HCPL-316J左边的VIN+,FAULT和RESET分别与微机相连。R7,R8,R9,D5,D6和C12 起输入保护作用,防止过高的输入电压损坏IGBT,但是保护电路会产生约1s延时,在开关频率超过100kHz时不适合使用。Q3最主要起互锁作用,当两路PWM信号(同一桥臂)都为高电平时,Q3导通,把输入电平拉低,使输出端也为低电平。图3中的互锁信号Interlock,和Interlock2分别与另外一个316J Interlock2和Interlock1相连。R1和C2起到了对故障信号的放大和滤波,当有干扰信号后,能让微机正确接受信息。 在输出端,R5和C7关系到IGBT开通的快慢和开关损耗,增加C7可以明显地减小dicdt。首先计算栅极电阻:其中ION为开通时注入IGBT的栅极电流。为使IGBT迅速开通,设计,IONMAX值为20A。输出低电平VOL=2v。可得 C3是一个非常重要的参数,最主要起充电延时作用。当系统启动,芯片开始工作时,由于IGBT的集电极C端电压还远远大于7V,若没有C3,则会错误地发出短路故障信号,使输出直接关断。当芯片正常工作以后,假使集电极电压瞬间升高,之后立刻恢复正常,若没有C3,则也会发出错误的故障信号,使IGBT误关断。但是,C3的取值过大会使系统反应变慢,而且在饱和情况下,也可能使IGBT在延时时间内就被烧坏,起不到正确的保护作用, C3取值100pF,其延时时间 在集电极检测电路用两个二极管串连,能够提高总体的反向耐压,从而能够提高驱动电压等级,但二极管的反向恢复时间要很小,且每个反向耐压等级要为1000V,一般选取BYV261E,反向恢复时间75 ns。R4和C5的作用是保留HCLP-316J出现过流信号后具有的软关断特性,其原理是C5通过内部MOSFET的放电来实现软关断。图3中输出电压VOUT经过两个快速三极管推挽输出,使驱动电流最大能达到20A,能够快速驱动1700v、200-300A的IGBT。33驱动电源设计 在驱动设计中,稳定的电源是IGBT能否正常工作的保证。如图4所示。电源采用正激变换,抗干扰能力较强,副边不加滤波电感,输入阻抗低,使在重负载情况下电源输出电压仍然比较稳定。 当s开通时,+12v(为比较稳定的电源,精度很高)电压便加到变压器原边和S相连的绕组,通过能量耦合使副边经过整流输出。当S关断时,通过原边二极管和其相连的绕组把磁芯的能量回馈到电源,实现变压器磁芯的复位。555定时器接成多谐振荡器,通过对C1的充放电使脚2和脚6的电位在48v之间变换,使脚3输出电压方波信号,并用方波信号来控制S的开通和关断。+12v经过R1,D2给C1充电,其充电时间t1R1C2ln2;放电时间t2=R2C1ln2,充电时输出高电平,放电时输出低电平。所以占空比=t1(t1+t2)。 变压器按下述参数进行设计:原边接+12v,频率为60kHz,工作磁感应强度Bw为O15T,副边+15v输出2A,-5v输出1 A,效率n=80,窗口填充系数Km为O5,磁芯填充系数Kc为1,线圈导线电流密度d为3 Amm2。则输出功率PT=(15+O6)22+(5+O6)12=64W。变压器磁芯参数 由于带载后驱动电源输出电压会有所下降,所以,在实际应用中考虑提高频率和占空比来稳定输出电压。 4 结语 本文设计了一个可驱动l700v,200300A的IGBT的驱动电路。硬件上实现了对两个IGBT(同一桥臂)的互锁,并设计了可以直接给两个IGBT供电的驱动电源。IGBT模块驱动及保护电路设计1 引言IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十kHz频率范围内,故在较高频率的大、中功率应用中占据了主导地位。IGBT 是电压控制型器件,在它的栅极?发射极间施加十几V的直流电压,只有A级的漏电流流过,基本上不消耗功率。但IGBT的栅极?发射极间存在着较大的寄生 电容(几千至上万pF),在驱动脉冲电压的上升及下降沿需要提供数A的充放电电流,才能满足开通和关断的动态要求,这使得它的驱动电路也必须输出一定的峰 值电流。 IGBT作为一种大功率的复合器件,存在着过流时可能发生锁定现象而造成损坏的问题。在过流时如采用一般的速度封锁栅极电压,过高的电流变化率会引起过电压,为此需要采用软关断技术,因而掌握好IGBT的驱动和保护特性是十分必要的。2 栅极特性 IGBT的栅极通过一层氧化膜与发射极实现电隔离。由于此氧化膜很薄,其击穿电压一般只能达到2030V,因此栅极击穿是IGBT失效的常见原因之一。 在应用中有时虽然保证了栅极驱动电压没有超过栅极最大额定电压,但栅极连线的寄生电感和栅极集电极间的电容耦合,也会产生使氧化层损坏的振荡电压。为 此。通常采用绞线来传送驱动信号,以减小寄生电感。在栅极连线中串联小电阻也可以抑制振荡电压。 由于IGBT的栅极发射极和栅极集电极间存在着分布电容Cge和Cgc,以及发射极驱动电路中存在有分布电感Le,这些分布参数的影响,使得IGBT 的实际驱动波形与理想驱动波形不完全相同,并产生了不利于IGBT开通和关断的因素。这可以用带续流二极管的电感负载电路(见图1)得到验证。(a)等 效 电 路 (b)开 通 波 形 图1 IGBT开关等效电路和开通波形 在t0时刻,栅极驱动电压开始上升,此时影响栅极电压uge上升斜率的主要因素只有Rg和Cge,栅极电压上升较快。在t1时刻达到IGBT的栅极门槛值,集电极电流开始上升。从此时开始有2个原因导致uge波形偏离原有的轨迹。 首先,发射极电路中的分布电感Le上的感应电压随着集电极电流ic的增加而加大,从而削弱了栅极驱动电压,并且降低了栅极发射极间的uge的上升率,减缓了集电极电流的增长。 其次,另一个影响栅极驱动电路电压的因素是栅极集电极电容Cgc的密勒效应。t2时刻,集电极电流达到最大值,进而栅极集电极间电容Cgc开始放电, 在驱动电路中增加了Cgc的容性电流,使得在驱动电路内阻抗上的压降增加,也削弱了栅极驱动电压。显然,栅极驱动电路的阻抗越低,这种效应越弱,此效应一 直维持到t3时刻,uce降到零为止。它的影响同样减缓了IGBT的开通过程。在t3时刻后,ic达到稳态值,影响栅极电压uge的因素消失后,uge以 较快的上升率达到最大值。 由图1波形可看出,由于Le和Cgc的存在,在IGBT的实际运行中uge的上升速率减缓了许多,这种阻碍驱动电压上升的效应,表现为对集电极电流上升及 开通过程的阻碍。为了减缓此效应,应使IGBT模块的Le和Cgc及栅极驱动电路的内阻尽量小,以获得较快的开通速度。IGBT关断时的波形如图 2所示。t0时刻栅极驱动电压开始下降,在t1时刻达到刚能维持集电极正常工作电流的水平,IGBT进入线性工作区,uce开始上升,此时,栅极集电极 间电容Cgc的密勒效应支配着uce的上升,因Cgc耦合充电作用,uge在t1t2期间基本不变,在t2时刻uge和ic开始以栅极发射极间固有阻 抗所决定的速度下降,在t3时,uge及ic均降为零,关断结束。图2 IGBT关断时的波形 由图2可看出,由于电容Cgc的存在,使得IGBT的关断过程也延长了许多。为了减小此影响,一方面应选择Cgc较小的IGBT器件;另一方面应减小驱动电路的内阻抗,使流入Cgc的充电电流增加,加快了uce的上升速度。 在实际应用中,IGBT的uge幅值也影响着饱和导通压降:uge增加,饱和导通电压将减小。由于饱和导通电压是IGBT发热的主要原因之一,因此必须 尽量减小。通常uge为1518V,若过高,容易造成栅极击穿。一般取15V。IGBT关断时给其栅极发射极加一定的负偏压有利于提高IGBT的抗骚 扰能力,通常取510V。3栅极串联电阻对栅极驱动波形的影响 栅极驱动电压的上升、下降速率对IGBT开通关断过程有着较大的影响。IGBT的MOS沟道受栅极电压的直接控制,而MOSFET部分的漏极电流控制着双 极部分的栅极电流,使得IGBT的开通特性主要决定于它的MOSFET部分,所以IGBT的开通受栅极驱动波形的影响较大。IGBT的关断特性主要取决于 内部少子的复合速率,少子的复合受MOSFET的关断影响,所以栅极驱动对IGBT的关断也有影响。 在高频应用时,驱动电压的上升、下降速率应快一些,以提高IGBT开关速率降低损耗。 在正常状态下IGBT开通越快,损耗越小。但在开通过程中如有续流二极管的反向恢复电流和吸收电容的放电电流,则开通越快,IGBT承受的峰值电流越大, 越容易导致IGBT损害。此时应降低栅极驱动电压的上升速率,即增加栅极串联电阻的阻值,抑制该电流的峰值。其代价是较大的开通损耗。利用此技术,开通过 程的电流峰值可以控制在任意值。由以上分析可知,栅极串联电阻和驱动电路内阻抗对IGBT的开通过程影响较大,而对关断过程影 响小一些,串联电阻小有利于加快关断速率,减小关断损耗,但过小会造成di/dt过大,产生较大的集电极电压尖峰。因此对串联电阻要根据具体设计要求进行 全面综合的考虑。栅极电阻对驱动脉冲的波形也有影响。电阻值过小时会造成脉冲振荡,过大时脉冲波形的前后沿会发生延迟和变缓。IGBT的栅极输入 电容Cge随着其额定电流容量的增加而增大。为了保持相同的驱动脉冲前后沿速率,对于电流容量大的IGBT器件,应提供较大的前后沿充电电流。为此,栅极 串联电阻的电阻值应随着IGBT电流容量的增加而减小。4IGBT的驱动电路 IGBT的驱动电路必须具备2个功能:1. 是实现控制电路与被驱动IGBT栅极的电隔离; 2. 是提供合适的栅极驱动脉冲。实现电隔离可采用脉冲变压器、微分变压器及光电耦合器。 图3 由分立元器件构成的IGBT驱动电路 图3为采用光耦合器等分立元器件构成的IGBT驱动电路。当输入控制信号时,光耦VLC导通,晶体管V2截止,V3导通输出15V驱动电压。当输入控制 信号为零时,VLC截止,V2、V4导通,输出10V电压。15V和10V电源需靠近驱动电路,驱动电路输出端及电源地端至IGBT栅极和发射极的 引线应采用双绞线,长度最好不超过0.5m。图4 由集成电路TLP250构成的驱动器 图4为由集成电路TLP250构成的驱动器。TLP250内置光耦的隔离电压可达2500V,上升和下降时间均小于0.5s,输出电流达0.5A,可直 接驱动50A/1200V以内的IGBT。外加推挽放大晶体管后,可驱动电流容量更大的IGBT。TLP250构成的驱动器体积小,价格便宜,是不带过流 保护的IGBT驱动器中较理想的选择。5IGBT的过流保护 IGBT的过流保护电路可分为2类:一类是低倍数的(1.21.5倍)的过载保护;一类是高倍数(可达810倍)的短路保护。 对于过载保护不必快速响应,可采用集中式保护,即检测输入端或直流环节的总电流,当此电流超过设定值后比较器翻转,封锁所有IGBT驱动器的输入脉冲,使输出电流降为零。这种过载电流保护,一旦动作后,要通过复位才能恢复正常工作。 IGBT能承受很短时间的短路电流,能承受短路电流的时间与该IGBT的导通饱和压降有关,随着饱和导通压降的增加而延长。如饱和压降小于2V的IGBT 允许承受的短路时间小于5s,而饱和压降3V的IGBT允许承受的短路时间可达15s,45V时可达30s以上。存在以上关系是由于随着饱和导通 压降的降低,IGBT的阻抗也降低,短路电流同时增大,短路时的功耗随着电流的平方加大,造成承受短路的时间迅速减小。 通常采取的保护措施有软关断和降栅压2种。软关断指在过流和短路时,直接关断IGBT。但是,软关断抗骚扰能力差,一旦检测到过流信号就关断,很容易发生 误动作。为增加保护电路的抗骚扰能力,可在故障信号与启动保护电路之间加一延时,不过故障电流会在这个延时内急剧上升,大大增加了功率损耗,同时还会导致 器件的di/dt增大。所以往往是保护电路启动了,器件仍然坏了。 降栅压旨在检测到器件过流时,马上降低栅压,但器件仍维持导通。降栅压后设有固定延时,故障电流在这一延时期内被限制在一较小值,则降低了故障时器件的功 耗,延长了器件抗短路的时间,而且能够降低器件关断时的di/dt,对器件保护十分有利。若延时后故障信号依然存在,则关断器件,若故障信号消失,驱动电 路可自动恢复正常的工作状态,因而大大增强了抗骚扰能力。 上述降栅压的方法只考虑了栅压与短路电流大小的关系,而在实际过程中,降栅压的速度也是一个重要因素,它直接决定了故障电流下降的di/dt。慢降栅压技 术就是通过限制降栅压的速度来控制故障电流的下降速率,从而抑制器件的dv/dt和uce的峰值。图5给出了实现慢降栅压的具体电路。图5 实现慢降栅压的电路正常工作时,因故障检测二极管VD1的导通,将a点的电压钳位在稳压二极管VZ1的击穿电压以下,晶体管VT1始终保持截止状态。V1通过驱动电阻Rg 正常开通和关断。电容C2为硬开关应用场合提供一很小的延时,使得V1开通时uce有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国智能磁性翻板行业发展研究报告
- 2025至2030年中国智力游戏机行业发展研究报告
- 生涯规划的核心要素
- 2025至2030年中国无碱玻璃纤维无捻粗纱布行业发展研究报告
- 2025至2030年中国方纹压纹机行业投资前景及策略咨询研究报告
- 2025至2030年中国新工拉马行业投资前景及策略咨询报告
- 2025至2030年中国整体拉伸两片罐行业投资前景及策略咨询报告
- 2025至2030年中国排骨味调料市场分析及竞争策略研究报告
- 中国楼宇能源管理行业发展状况与前景趋势调查报告2025-2030年
- 跨国公司风险管理
- 北京工业大学《软件工程(双语)》2023-2024学年期末试卷
- 黑龙江省哈尔滨市香坊区风华中学2024-2025学年九年级(五四学制)上学期10月月考语文试题
- 2024年云南省昆明市盘龙区小升初英语试卷
- 联合国可持续发展目标(SDGs)战略白皮书
- 论网络购物消费者个人信息的法律保护
- 【基于单片机的汽车智能防盗报警系统设计11000字(论文)】
- 内蒙古呼和浩特市第十六中学2024-2025学年高二语文上学期期中试题无答案
- 市政道路及设施零星养护服务技术方案(技术标)
- 脑卒中后吞咽障碍患者进食护理课件
- 19《牧场之国》第二课时公开课一等奖创新教学设计
- CQI-8分层过程审核指南(附全套表格)
评论
0/150
提交评论