已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题二:函数的周期性和对称性【高考地位】函数的周期性和对称性是函数的两个基本性质。在高中数学中,研究一个函数,首看定义域、值域,然后就要研究对称性(中心对称、轴对称),并且在高考中也经常考查函数的对称性和周期性,以及它们之间的联系。因此,我们应该掌握一些简单常见的几类函数的周期性与对称性的基本方法。【方法点评】一、函数的周期性求法使用情景:几类特殊函数类型解题模板:第一步 合理利用已知函数关系并进行适当地变形; 第二步 准确求出函数的周期性; 第三步 运用函数的周期性求解实际问题.例1 (1) 函数对于任意实数满足条件,若,则( )A B C D【答案】D考点:函数的周期性(2) 已知在R上是奇函数,且满足,当时,则( )A、-12 B、-16 C、-20 D、0【答案】A试题分析:因为,所以,的周期为,因此 ,故选A 考点:1、函数的奇偶性;2、函数的解析式及单调性【点评】(1)函数的周期性反映了函数在整个定义域上的性质对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值(2)求函数周期的方法【变式演练1】已知定义在上的函数满足,则( )A B C D【答案】B【变式演练2】定义在上的函数满足时,则的值为( )A.-2 B.0 C.2 D.8【答案】A试题分析: 由已知可得的周期,故选A.考点:函数的周期性.【变式演练3】定义在上的偶函数满足,且在上为增函数,则下列不等式成立的是( )A B C D【答案】B试题分析:因为定义在上的偶函数在上为增函数,所以在上单调递减,又,所以,又,所以考点:1偶函数的性质;2函数的周期性二、函数的对称性问题使用情景:几类特殊函数类型解题模板:记住常见的几种对称结论:第一类 函数满足时,函数的图像关于直线对称; 第二类 函数满足时,函数的图像关于点对称; 第三类 函数的图像与函数的图像关于直线对称.例2 (从对称性思考)已知定义在上的函数满足,则( )A B C D【答案】B【易错点晴】函数满足则函数关于中心对称,,则函数关于轴对称,常用结论:若在上的函数满足,则函数以为周期.本题中,利用此结论可得周期为,进而,需要回到本题利用题干条件赋值即可. 例3 已知定义在上的函数的图象关于点对称, 且满足,又,则( )A B C D【答案】D试题分析:由得,又,的图象关于点对称,所以,由可得,故选D.考点:函数的周期性;函数的对称性例4 已知函数为自然对数的底数)与的图像上存在关于轴对称的点,则实数的取值范围是( )A B C D【答案】B考点:利用导数研究函数的极值;方程的有解问题.【变式演练4】定义在上的奇函数,对于,都有,且满足,则实数的取值范围是 .【答案】或试题分析:由,因此函数图象关于直线对称,又是奇函数,因此它也是周期函数,且,即,解得.考点:函数的奇偶性、周期性.【高考再现】1. 【2016高考新课标2理数】已知函数满足,若函数与图像的交点为则( )(A)0 (B) (C) (D)【答案】C试题分析:由于,不妨设,与函数的交点为,故,故选C.考点: 函数图象的性质【名师点睛】如果函数,满足,恒有,那么函数的图象有对称轴;如果函数,满足,恒有,那么函数的图象有对称中心.2. 【2016高考山东理数】已知函数f(x)的定义域为R.当x0时, ;当 时,;当 时, .则f(6)= ( )(A)2 (B)1 (C)0 (D)2【答案】D考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.3. 【2016年高考四川理数】已知函数是定义在R上的周期为2的奇函数,当0x1时,则= .【答案】-2考点:函数的奇偶性和周期性.【名师点睛】本题考查函数的奇偶性,周期性,属于基本题,在求值时,只要把和,利用奇偶性与周期性化为上的函数值即可5. 【2016高考江苏卷】设是定义在上且周期为2的函数,在区间上, 其中 若 ,则的值是 .【答案】【解析】,因此考点:分段函数,周期性质【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.【反馈练习】1. 【2016届云南昆明一中高三仿真模拟七数学,理4】设函数定义在实数集上,则函数与的图象( )A关于直线对称 B关于直线对称C关于直线对称 D关于直线对称【答案】D2【 2017届河南夏邑县第一高级中学高三文一轮复习周测二数学试卷】已知函数是定义在内的奇函数,且满足,当时,则( )A-2 B2 C-98 D98【答案】A试题分析:由得的周期,故选A.考点:1、函数的奇偶性;2、函数的周期性.3. 【2017届河南新乡一中高三9月月考数学,文8】定义在上的偶函数满足,对且,都有,则有( )A B C D【答案】A【解析】试题分析:因为,所以,及是周期为的函数,结合是偶函数可得,再由且,得在上递增,因此,即,故选A考点:1、函数的周期性;2、奇偶性与单调性的综合4. 【2017届安徽合肥一中高三上学期月考一数学试卷,文12】已知定义在上的函数满足:的图象关于点对称,且当时恒有,当时,则( )A B C D【答案】A试题分析:的图象关于点对称,则关于原点对称. 当时恒有即函数的周期为.所以. 考点:函数的单调性、周期性与奇偶性,分段函数5. 【2016-2017学年贵州遵义四中高一上月考一数学试卷,理11】已知函数与的图象上存在关于轴对称的点,则实数的取值范围是( )A B C D【答案】C【解析】考点:构造函数法求方程的解及参数范围.6. 【2017届河北武邑中学高三上周考8.14数学试卷,理9】若对正常数和任意实数,等式成立,则下列说法正确的是( )A函数是周期函数,最小正周期为 B函数是奇函数,但不是周期函数C函数是周期函数,最小正周期为 D函数是偶函数,但不是周期函数【答案】C考点:函数的周期性7. 【2017届四川成都七中高三10月段测数学试卷,文10】 函数的定义域为,以下命题正确的是( )同一坐标系中,函数与函数的图象关于直线对称;函数的图象既关于点成中心对称,对于任意,又有,则的图象关于直线对称;函数对于任意,满足关系式,则函数是奇函数.A B C D【答案】D【解析】试题分析:正确,因为函数与关于轴对称,而和都是与向右平移1个单位得到的,所以关于直线对称;正确,因为函数关于点成中心对称,所以,而,所以,即,又根据,可得函数的周期,又有,所以,所以函数关于直线对称;正确,因为,所以函数关于点对称,而函数是函数向左平移3个单位得到,所以函数是奇函数.故3个命题都正确,故选D.考点:抽象函数的性质8. 【2015-2016学年东北育才学校高二下段考二试数学,文12】函数 的图像上关于原点对称的点有( )对A. 0 B. 2 C. 3 D. 无数个【答案】B试题分析:作出函数的图象如图所示,再作出关于原点对称的图象,记为曲线.容易发现与曲线有且只有两个不同的交点,所以满足条件的对称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 废铀废料的处理与再利用考核试卷
- 文化传承保护和弘扬有价值的专业知识遗产考核试卷
- 内陆养殖的农村地区与农业生产保障考核试卷
- 橡胶制品业财务制度样本
- 家政服务销售采购合同管理要点
- 办公楼内墙装修合同
- 通信运营商招投标质量控制
- 建筑用电梯保养拆除协议
- 建筑材料模板施工承包合同
- 学校改造混凝土施工合同
- 医疗器械公司组织机构图以及部门设置和岗位职责说明
- 统编版(2024新版)道德与法治七年级上册8.1《认识生命》教案
- 九年级上册道德与法治 第八课第二框《共圆中国梦》(公开课)教学设计
- 4.13.1《在劳动中创造人生价值》教学设计人教统编版道德与法治七年级上册2024新教材
- 2024年全国职业院校技能大赛中职(数字产品检测与维护赛项)考试题库(含答案)
- 2024年头孢菌素行业现状分析:头孢菌素国内市场规模达到5515.47亿元
- 班主任能力大赛情景答辩环节真题及答案高中组
- 2024年中国邮政集团限公司贵州省分公司社会招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024山西航空产业集团限公司公开招聘105人高频考题难、易错点模拟试题(共500题)附带答案详解
- 机动车检验检测机构授权签字人考核试题及答案
- 小学语文“思辨性阅读与表达”学习任务群
评论
0/150
提交评论