已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24 4解直角三角形 导入新课 讲授新课 当堂练习 课堂小结 第1课时解直角三角形及其简单应用 1 会运用勾股定理解直角三角形 重点 2 会运用直角三角形的两个锐角互余及锐角三角函数解直角三角形 重点 3 能够把实际问题转化成解直角三角形的问题 难点 b 1 三边之间的关系 a2 b2 2 锐角之间的关系 a b 3 边角之间的关系 sina cosa tana 在rt abc中 共有六个元素 三条边 三个角 其中 c 90 那么其余五个元素之间有怎样的关系呢 c2 90 导入新课 观察与思考 比萨铁塔倾斜问题 设塔顶中心点为b 塔身中心线与垂直中心线的夹角为 a 过b点向垂直中心线引垂线 垂足为点c 如图 在rt abc中 c 90 bc 5 2m ab 54 5m 所以 a 5 28 可以求出2001年纠偏后塔身中心线与垂直中心线的夹角 你愿意试着计算一下吗 a b c 讲授新课 要想使人安全地攀上斜靠在墙面上的梯子的顶端 梯子与地面所成的角a一般要满足50 a 75 现有一个长6m的梯子 问 1 当梯子底端距离墙面2 4m时 梯子与地面所成的角a等于多少 精确到1 这时人是否能够安全使用这个梯子 2 使用这个梯子最高可以安全攀上多高的墙 精确到0 1m 对于问题 1 当梯子底端距离墙面2 4m时 求梯子与地面所成的角a的问题 可以归结为 在rt abc中 已知ac 2 4 斜边ab 6 求锐角a的度数 由于 利用计算器求得 a 66 因此当梯子底墙距离墙面2 4m时 梯子与地面所成的角大约是66 由50 66 75 可知 这时使用这个梯子是安全的 在图中的rt abc中 1 根据 a 75 斜边ab 6 你能求出这个直角三角形的其他元素吗 在图中的rt abc中 2 根据ac 2 4 斜边ab 6 你能求出这个直角三角形的其他元素吗 6 2 4 由得 问题 2 可以归结为 在rt abc中 已知 a 75 斜边ab 6 求 a的对边bc的长 问题 2 当梯子与地面所成的角a为75 时 梯子顶端与地面的距离是使用这个梯子所能攀到的最大高度 因此使用这个梯子能够安全攀到墙面的最大高度约是5 8m 所以bc 6 0 97 5 8 由计算器求得sin75 0 97 事实上 在直角三角形的六个元素中 除直角外 如果再知道两个元素 其中至少有一个是边 这个三角形就可以确定下来 这样就可以由已知的两个元素求出其余的三个元素 解直角三角形 在直角三角形中 由已知元素求未知元素的过程 1 如图 在rt abc中 c 90 解这个直角三角形 解 当堂练习 2 如图 在rt abc中 c 90 ac 6 bac的平分线 解这个直角三角形 6 解 因为ad平分 bac 3 在rt abc中 c 90 根据下列条件解直角三角形 1 a 30 b 20 解 根据勾股定理 在rt abc中 c 90 根据下列条件解直角三角形 2 b 72 c 14 解 4 如下图 某人想沿着梯子爬上高4米的房顶 梯子的倾斜角 梯子与地面的夹角 不能大于60 否则就有危险 那么梯子的长至少为多少米 解 如图所示 依题意可知 当 b 60 时 答 梯子的长至少3 5米 c a b 2 两锐角之间的关系 a b 90 3 边角之间的关系 1 三边之间的关系 勾股定理 在解直角三角形的过程中 一般要用到下面一些关系 课堂小结 1 数形结合思想 方法 把
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑参观实习总结(3篇)
- 购房协议书范本电子版(3篇)
- 敬老爱老演讲稿(32篇)
- 幼儿园网络研修培训总结范文(3篇)
- 小学生开学演讲稿
- 2024-2025学年四川省成都市九县区高一(上)期中物理试卷(含答案)
- 四川省高考语文五年试题汇编-文言文阅读
- 2024年家教合同范本
- 2024年贵州省公务员考试《行测》真题及答案解析
- 调研报告:执行信息化建设存在的问题及对策建议
- 浅析牵引变压器非电量保护误动原因及解决方案
- [精品]台湾地区零售药店的现状与发展趋势
- 小学二年级等量代换
- 焙烧炉烟气换热器的设计方案
- 燃气公司安全管理奖罚办法
- 客位大金湖旅游船初步设计
- KCl-NaCl-H2O三元体系相图
- 血浆置换及临床的应用业内特制
- 雨蝶(李翊君)原版正谱钢琴谱五线谱乐谱.docx
- 人教版地理必修一教材解读(2019年版)
- 综合实践活动五年级下册课件-制作木蜻蜓14张ppt课件
评论
0/150
提交评论