




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
求曲线的方程(30分钟50分)一、选择题(每小题3分,共18分)1.已知动点p到点(1,-2)的距离为3,则动点p的轨迹方程是()a.(x+1)2+(y-2)2=9b.(x-1)2+(y+2)2=9c.(x+1)2+(y-2)2=3d.(x-1)2+(y+2)2=3【解析】选b.设p(x,y),由题设得(x-1)2+(y+2)2=3,所以(x-1)2+(y+2)2=9.2.已知等腰三角形abc底边两端点是a(-3,0),b(3,0),顶点c的轨迹是()a.一条直线b.一条直线去掉一点c.一个点d.两个点【解析】选b.到两定点距离相等的点的轨迹为两点连线的垂直平分线.注意当点c与a,b共线时,不符合题意,应去掉.3.(2014临沂高二检测)在abc中,若b,c的坐标分别是(-2,0),(2,0),中线ad的长度是3,则a点轨迹方程是()a.x2+y2=3b.x2+y2=4c.x2+y2=9(y0)d.x2+y2=9(x0)【解析】选c.易知bc中点d即为原点o,所以|oa|=3,所以点a的轨迹是以原点为圆心,以3为半径的圆,又因abc中,a,b,c三点不共线,所以y0.所以选c.【变式训练】一动点到y轴的距离比到点(2,0)的距离小2,则此动点的轨迹方程为.【解析】设动点为p(x,y),则由条件得:(x-2)2+y2=|x|+2,平方得y2=4x+4|x|,当x0时,y2=8x;当x0时,y=0.所以动点的轨迹方程为y2=8x(x0)或y=0(x0).答案:y2=8x(x0)或y=0(x0,y0)b.3x2-32y2=1(x0,y0)c.32x2-3y2=1(x0,y0)d.32x2+3y2=1(x0,y0)【解析】选d.设a(x0,0),b(0,y0),则bp=(x,y-y0),pa=(x0-x,-y),因为bp=2pa,所以(x,y-y0)=2(x0-x,-y),所以x=2x0-2x,y-y0=-2y,得x0=32x,y0=3y,因此a点坐标为32x,0,b点坐标为(0,3y),又因为点q与点p关于y轴对称,所以q(-x,y),由oqab=1,得(-x,y)-32x,3y=1,即32x2+3y2=1,又p点在第一象限,所以x0,y0.故选d.二、填空题(每小题4分,共12分)7.(2014温州高二检测)已知点m到定点f(1,0)的距离和它到定直线l:x=4的距离的比是常数12,设点m的轨迹为曲线c,则曲线c的轨迹方程是.【解析】设点m(x,y),则据题意有(x-1)2+y2|x-4|=12,则4(x-1)2+y2=(x-4)2,即3x2+4y2=12,所以x24+y23=1,故曲线c的方程为x24+y23=1.答案:x24+y23=18.(2014珠海高二检测)动点p与平面上两定点a(-2,0),b(2,0)连线的斜率的积为定值-12,则动点p的轨迹方程为.【解析】设p(x,y),由题意知,x2,kap=yx+2,kbp=yx-2,由条件知kapkbp=-12,所以yx+2yx-2=-12,整理得x2+2y2-2=0(x2).答案:x2+2y2-2=0(x2)【误区警示】解答本题时容易漏掉“x2”这个条件.这是因为忽略了直线斜率的存在性所导致.所以做题时理解要到位,避免因隐含条件未挖掘出来而导致错误发生.9.由动点p向圆x2+y2=1引两条切线pa,pb,切点分别为a,b,apb=60,则动点p的轨迹方程为.【解析】如图.|pa|=|pb|,连接po.则opb=30.因为|ob|=1.所以|po|=2.所以p点的轨迹是以o为圆心以2为半径的圆,即x2+y2=4.答案:x2+y2=4三、解答题(每小题10分,共20分)10.(2014唐山高二检测)设点p是圆x2+y2=4上任意一点,由点p向x轴作垂线pp0,垂足为p0,且mp0=32pp0,求点m的轨迹c的方程.【解析】设点m(x,y),p(x0,y0),则由题意知p0(x0,0).由mp0=(x0-x,-y),pp0=(0,-y0),且mp0=32pp0,得(x0-x,-y)=32(0,-y0),所以x0-x=0,-y=-32y0,于是x0=x,y0=23y.又x02+y02=4,所以x2+43y2=4,所以,点m的轨迹c的方程为x24+y23=1.【变式训练】若长为3的线段ab的端点a,b分别在x轴、y轴上移动,动点c(x,y)满足ac=2cb,求动点c的轨迹方程.【解析】设a,b两点的坐标分别为(a,0),(0,b),则ac=(x-a,y),cb=(-x,b-y),因为ac=2cb,所以x-a=-2x,y=2b-2y,即a=3x,b=32y.又因为|ab|=3,所以a2+b2=9,即9x2+94y2=9,即x2+y24=1.故动点c的轨迹方程为x2+y24=1.11.(2013陕西高考改编)已知动圆过定点a(4,0),且在y轴上截得的弦mn的长为8.求动圆圆心的轨迹c的方程.【解题指南】由弦长的一半、半径和弦心距构成直角三角形列出方程,化简后得出轨迹c的方程.【解析】a(4,0),设圆心c(x,y),线段mn的中点为e,由几何图象知me=mn2,ca2=cm2=me2+ec2(x-4)2+y2=42+x2y2=8x.(30分钟50分)一、选择题(每小题4分,共16分)1.(2014长沙高二检测)已知两点m(-2,0),n(2,0),点p为坐标平面内的动点,满足|mn|mp|+mnnp=0,则动点p(x,y)的轨迹方程为()a.y2=8xb.y2=-8xc.y2=4xd.y2=-4x【解析】选b.依题意可得,4(x+2)2+y2+4(x-2)=0,整理可得y2=-8x.2.曲线f(x,y)=0关于直线x-y-3=0对称的曲线方程为()a.f(x-3,y)=0b.f(y+3,x)=0c.f(y-3,x+3)=0d.f(y+3,x-3)=0【解题指南】求对称曲线上任意一点关于直线x-y-3=0的点的坐标(x,y),又(x,y)满足方程f(x,y)=0,由此可得对称曲线方程.【解析】选d.设p为对称曲线上任意一点,其坐标为(x,y),它关于直线x-y-3=0对称点的坐标为(x,y),依题意有y-yx-x=-1,x+x2-y+y2-3=0x=y+3,y=x-3.又(x,y)适合方程f(x,y)=0,故所求对称曲线方程为f(y+3,x-3)=0,故选d.3.已知点p是直线2x-y+3=0上的一个动点,定点m(-1,2),q是线段pm延长线上的一点,且|pm|=|mq|,则q点的轨迹方程是()a.2x+y+1=0b.2x-y-5=0c.2x-y-1=0d.2x-y+5=0【解析】选d.设q(x,y),则p为(-2-x,4-y),代入2x-y+3=0,得2x-y+5=0.【举一反三】若题中直线方程和点的坐标不变,其他条件改为“q是pm的中点”,则结论如何?【解析】设q(x,y),p(x0,y0),则x=x0-12,y=y0+22,所以x0=2x+1,y0=2y-2.因为点p在直线2x-y+3=0上,所以2(2x+1)-(2y-2)+3=0.整理得4x-2y+7=0,即点q的轨迹方程为4x-2y+7=0.4.(2014哈尔滨高二检测)在平面直角坐标系xoy中,点b与点a(-1,1)关于原点o对称,p是动点,且直线ap与bp的斜率之积等于13,则动点p的轨迹方程为()a.x2-3y2=-2b.x2-3y2=-2(x1)c.x2-3y2=2d.x2-3y2=2(x1)【解析】选b.设p(x,y),由于点b与点a(-1,1)关于原点o对称,所以b(1,-1).kpa=y-1x+1(x-1),kpb=y+1x-1(x1),因为kpakpb=13,所以y-1x+1y+1x-1=13.整理得x2-3y2=-2(x1).【变式训练】定长为6的线段,其端点分别在x轴,y轴上移动,则ab中点m的轨迹方程是()a.x2+y2=9b.x+y=6c.2x2+y2=12d.x2+2y2=12【解析】选a.设m点坐标为(x,y),a(0,y0),b(x0,0),因为m为ab中点,所以x=0+x02,y=0+y02,得x0=2x,y0=2y,因为|ab|=6,所以(2x-0)2+(0-2y)2=6,整理得:x2+y2=9.二、填空题(每小题5分,共10分)5.(2014成都高二检测)如图,动点m和两定点a(-1,0),b(2,0)构成mab,且mba=2mab,设动点m的轨迹为c,则轨迹c的方程为.【解析】设m的坐标为(x,y),显然有x0,且y0,当mba=90时,点m的坐标为(2,3),当mba90时,x2,由mba=2mab,有tanmba=2tanmab1-tan2mab,将tanmba=y2-x,tanmab=yx+1代入上式,化简可得3x2-y2-3=0,而点(2,3)在曲线3x2-y2-3=0上,综上可知,轨迹c的方程为3x2-y2-3=0(x1).答案:3x2-y2-3=0(x1)6.已知sin,cos是方程x2-ax+b=0的两根,则点p(a,b)的轨迹方程为.【解题指南】根据sin,cos是方程x2-ax+b=0的两根,建立a,b与sin,cos的关系,再通过消参,消去sin,cos得到a,b的关系式.【解析】由根与系数的关系知sin+cos=asincos=b由2-2得a2-2b=1.因为a=sin+cos=2sin+4,所以-2a2,b=12sin2,所以-12b12.所以点p的轨迹方程为:a2=2b+12(-2a2).答案:a2=2b+12(-2x2)【知识拓展】参数法的定义及消参的方法(1)参数法的定义求曲线方程时,若x,y的关系不明显或难以寻找,可借助中间量(即参数)使x和y建立起联系,然后再从式子中消去参数得到曲线方程,这种方法叫做参数法求曲线的方程.(2)消去参数的常用方法代入法:从所给的一个式子中解出所要消的参数,代入另外的式子,从而消去参数;加、减、乘、除法:通过对所给式子乘以某一常数后,再借助于加、减、乘、除,消去参数;平方法:通过平方,整体代入消去参数.三、解答题(每小题12分,共24分)7.(2014南京高二检测)abc的顶点b,c的坐标分别为(0,0),(4,0),ab边上的中线的长为3,求顶点a的轨迹方程.【解析】设a的坐标为(x,y),ab的中点d的坐标为(x1,y1).由中点坐标公式可知x1=x2,y1=y2,因为ab边上的中线cd=3,所以(x1-4)2+y12=9,化简整理得(x-8)2+y2=36.所以点a的轨迹方程为(x-8)2+y2=36(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024广西凭祥市友谊关旅游开发有限公司招聘11人笔试参考题库附带答案详解
- 晶圆缺陷的量子点检测论文
- 2025年消防安全知识培训考试题库:消防队伍建设与管理现场管理试题
- 2025年统计学期末考试:统计软件SPSS基础操作与高级应用试题
- 2025年中学教师资格考试《综合素质》教育案例深度剖析试题集含答案集锦
- 2025年小学语文毕业升学考试全真模拟卷(古诗词鉴赏拓展试题)
- 2024年合肥合翼航空有限公司招聘若干人笔试参考题库附带答案详解
- 2025年小学英语毕业考试模拟卷:英语歌曲欣赏与演唱能力培养方法实战演练
- 昆明文理学院《日语教学法》2023-2024学年第一学期期末试卷
- 新疆农业大学科学技术学院《电气工程基础》2023-2024学年第二学期期末试卷
- 初中数学七年级下册 加减消元法 全国一等奖
- 利用智能垃圾分类系统促进资源回收利用
- 《天然气取样导则》课件
- 测爆、测氧仪操作规程
- 烟花爆竹生产企业安全生产风险监测预警系统建设方案
- 抗肿瘤药物处方审核要点
- 热处理危险有害因素辨识及控制措施
- 工业用烤箱安全操作规程范本
- 文件资料交接清单
- 围填海服务方案费用
- 人体解剖学与组织胚胎学课件
评论
0/150
提交评论