已阅读5页,还剩68页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
回归分析 线性回归和曲线估计 回归分析线性回归曲线估计 什么是回归分析 1 重点考察一个特定的变量 因变量 而把其他变量 自变量 看作是影响这一变量的因素 并通过适当的数学模型将变量间的关系表达出来2 利用样本数据建立模型的估计方程3 对模型进行显著性检验4 进而通过一个或几个自变量的取值来估计或预测因变量的取值 回归分析 回归分析的模型 一 分类按是否线性分 线性回归模型和非线性回归模型按自变量个数分 简单的一元回归和多元回归二 基本的步骤利用SPSS得到模型关系式 是否是我们所要的 要看回归方程的显著性检验 F检验 回归系数b的显著性检验 T检验 拟合程度R2 注 相关系数的平方 一元回归用RSquare 多元回归用AdjustedRSquare 回归分析的过程 在回归过程中包括 Liner 线性回归CurveEstimation 曲线估计BinaryLogistic 二分变量逻辑回归MultinomialLogistic 多分变量逻辑回归 Ordinal序回归 Probit 概率单位回归 Nonlinear 非线性回归 WeightEstimation 加权估计 2 StageLeastsquares 二段最小平方法 OptimalScaling最优编码回归我们只讲前面2个简单的 一般教科书的讲法 线性回归 线性回归分为一元线性回归和多元线性回归 一 一元线性回归 1 涉及一个自变量的回归2 因变量y与自变量x之间为线性关系被预测或被解释的变量称为因变量 dependentvariable 用y表示用来预测或用来解释因变量的一个或多个变量称为自变量 independentvariable 用x表示3 因变量与自变量之间的关系用一个线性方程来表示 线性回归的过程 一元线性回归模型确定过程一 做散点图 Graphs Scatter Simple 目的是为了以便进行简单地观测 如 Salary与Salbegin的关系 二 建立方程若散点图的趋势大概呈线性关系 可以建立线性方程 若不呈线性分布 可建立其它方程模型 并比较R2 1 来确定一种最佳方程式 曲线估计 多元线性回归一般采用逐步回归方法 Stepwise 一 一元线性回归模型 linearregressionmodel 1 描述因变量y如何依赖于自变量x和误差项 的方程称为回归模型2 一元线性回归模型可表示为y b0 b1x e注 线性部分反映了由于x的变化而引起的y的变化 误差项 反映了除x和y之间的线性关系之外的随机因素对y的影响 它是不能由x和y之间的线性关系所解释的变异性 Y是x的线性函数 部分 加上误差项 0和 1称为模型的参数 误差项 是随机变量 一元线性回归模型 基本假定 1 因变量x与自变量y之间具有线性关系2 在重复抽样中 自变量x的取值是固定的 即假定x是非随机的3 误差项 满足条件 误差项 满足条件 正态性 是一个服从正态分布的随机变量 且期望值为0 即 N 0 2 对于一个给定的x值 y的期望值为E y 0 1x方差齐性 对于所有的x值 的方差一个特定的值 的方差也都等于2都相同 同样 一个特定的x值 y的方差也都等于 2独立性 独立性意味着对于一个特定的x值 它所对应的 与其他x值所对应的 不相关 对于一个特定的x值 它所对应的y值与其他x所对应的y值也不相关 估计的回归方程 estimatedregressionequation 总体回归参数 0和 1是未知的 必须利用样本数据去估计用样本统计量和代替回归方程中的未知参数 0和 1 就得到了估计的回归方程一元线性回归中估计的回归方程为 其中 是估计的回归直线在y轴上的截距 是直线的斜率 它表示对于一个给定的x的值 是y的估计值 也表示x每变动一个单位时 y的平均变动值 x SPSS线性回归分析 多元线性回归分析基本结构与一元线性回归相同 而他们在SPSS下的功能菜单是集成在一起的 下面通过SPSS操作步骤解释线性回归分析问题 SPSS过程 步骤一 录入数据 选择分析菜单中的Regression liner打开线性回归分析对话框 步骤二 选择被解释变量和解释变量 其中因变量列表框中为被解释变量 自变量为回归分析解释变量 注 要对不同的自变量采用不同引入方法时 选NEXT按钮把自变量归入不同自变量块中 第三步 选择个案标签 在变量列表中选择变量至个案标签中 而被选择的变量的标签用于在图形中标注点的值 第四步 选择加权二乘法 WLS 在变量列表框中选择变量至WLS中 但是该选项仅在被选变量为权变量时选择 第五步 如果点击OK 可以执行线性回归分析操作 Method选项 Enter 强迫引入法 默认选项 全部被选变量一次性进入回归模型 Stepwise 强迫剔除法 每一次引入变量时 概率F最小值的变量将引入回归方程 如果已引入回归方程的变量的F大于设定值 将被剔除回归方程 当无变量被引入或剔除 时终止回归方程Remove 剔除变量 不进入方程模型的被选变量剔除 Backward 向后消去Forward 向前引入 Rule选项 选择一个用于指定分析个案的选择规则的变量 选择规则包括 等于 不等于 大于 小于 大于或等于 小于或等于 Value中输入相应变量的设定规则的临界值 Statistics选项 回归系数框估计值 显示回归系数的估计值 回归系数的标准差 标准化回归系数 回归系数的 的t估计值和双尾显著性水平 置信区间协方差矩阵 模型拟合 复相关系数 判定系数 调整R2 估计值的标准误及方差分析R2改变量 增加或删除一个自变量产生的改变量描述性统计量 变量的均数 标准差 相关系数矩阵 单尾检验部分及偏相关系数 显示零阶相关 偏相关 部分相关系数共线性诊断 显示变量容差 方差膨胀因子和共线性的诊断表 残差统计量D W检验统计量 显示残差相关的D W检验和残差与预测值的综述统计 个案诊断 1 超过n倍标准差以上的个案为奇异值 2 显示所有变量的标准化残差 观测值和预测值 残差 Plots选项该对话框可以分析资料的正态性 线性和方差齐性 还可以检测奇异值或异常值等 1 因变量2 标准化预测值3 标准化残差4 删除残差5 调整预测值6 Student残差7 Student删除残差 Histogram 标准化残差的直方图 并给出正态曲线 Normalprobalityplot 标准化残差的正态概率图Produceallpartialplots 产生所有偏残差图 生成每个自变量残差与因变量残差的散点图 Save对话框 预测值包括非标准化的预测值 标准化的预测值 调整预测值 预测值均数标准误 距离包括自变量个案值与所有个案平均值距离 一个个案参与计算回归线系数时 所有个案残差变化的大小 杠杆值 残差非标准化残差标准化残差Student残差删除残差Student删除残差 影响统计量DFBeta值 删除一个个案后回归系数改变的大小 标准化DfBetaDfFit值 拟合值之差标准化DfFit协方差矩阵的比率 预测区间平均预测区间个体预测区间 Options选项 逐步回归方法准则使用F显著水平值Entry 当候选变量中最大F值概率小于等于引入值时 引入相应变量 Removal 剔除相应变量 实例分析 例 某单位对8名女工进行体检 体检项目包括体重和肺活量 数据如下 利用回归分析描述其关系 结果分析 描述性统计量 相关系数 表中Pearson相关系数为0 613 单尾显著性检验的概率p值为0 000 小于0 05 所以体重和肺活量之间具有较强的相关性 引入或剔除变量表 表中显示回归分析的方法以及变量被剔除或引入的信息 Method项为Enter 表明显示回归方法用得是强迫引入法引入变量 这里自变量只有一个 所以此表意义不大 模型摘要 两变量相关系数为0 613 判定系数为0 375 调整判定系数为0 352 估计值的标准误差为360 997 方差分析表 该表为回归分析的方差分析表 可以看出回归的均方为2115016 203 剩余的均方为130318 685 F检验统计量的观察值为16 230 p值为0 000小于0 05 可以认为体重和肺活量之间存在线性关系 回归系数 下表给出了回归方程中的参数和常数项的估计值 其中常数项系数为405 819 回归系数为47 835 线性回归参数的标准误差为11 874 标准化回归系数为0 613 回归系数t检验的t统计量观察值为4 029 t检验的p值为0 00 小于0 05可以认为回归系数有显著意义 回归诊断 下表对全部的观察单位进行回归诊断 结果表明 每一例的标准化残差 因变量观测值和预测值以及残差 残差统计量 表中显示了预测值 标准化预测值 残差 标准化残差等统计量的最小值 最大值 均数 标准差 回归标准化残差的直方图 在回归标准化残差的直方图中 正态曲线也被显示 用来判断标准化残差是否呈正态分布 回归标准化的正态P P图 图中给出了观察值的残差分布与假设的正态分布比较 如果标准化残差呈正态分布 则标准化残差点应该分布在直线上或靠近直线 因变量与回归标准化预测值的散点图 其中横坐标变量为标准化预测值 数据编辑窗口新增变量 从表中可以看到非标准化预测值 非标准化残差 预测值均数的标准误差 均值的预测区间 个体预测区间 在十九世纪四 五十年代 苏格兰物理学家JamesD Forbes 试图通过水的沸点来估计海拔高度 由于可以通过气压来估计海拔 他在阿尔卑斯山以及苏格兰收集了沸点及海拔的数据如表所示 现在通过线形回归拟合气压与沸点的关系 散点图 执行 Analyze Regression Linear 命令 弹出 Linear 对话框 程序 结果解读模型拟合度检验 方差分析表 回归分析结果 对残差统计量的分析 数据中无离群值 且数据的标准差比较小 可以认为模型是健康的 残差统计量检验 多元线性回归的例子 某大型金融机构中做了一项关于雇员对其主管满意度的调查 其中一个问题设计为对主管的工作业绩的综合评价 另外若干个问题涉及主管与其雇员间相互关系的具体方面 该研究试图解释主管性格与雇员对其整体满意度之间的关系 雇员对其主管满意度的调查 模型拟合度检验 方差分析 回归分析结果 拟合结果为 Y A X1 B X2 C X3 D 结果解读剔除变量列表 共线性检验指标 共线性检验结果 曲线估计 基本原理两变量之间的关系并不总是以线性形式表现出来的 更多的时候呈现出非线性关系 利用图形可表示为曲线 对非线性关系无法直接通过建立线性回归模型解决 虽然如此 但仍然存在一些非线性关系可以通过变量变换化成线性关系 并最终形成变换后的线性模型 SPSS过程 第一步 录入数据 选择分析菜单中的Regression liner打开线性曲线估计对话框 第二步 选择被解释变量和解释变量 第三步 选择曲线估计模型Linear 拟合直线方程 实际上与Linear过程的二元直线回归相同 Quadratic 拟合二次方程Y b0 b1t b2t2 Compound 拟合复合曲线模型Y b0X b1 t Growth 拟合等比级数曲线模型Y exp b0 b1t Logarithmic 拟合对数方程Y b0 b1lnt Cubic 拟合三次方程Y b0 b1t b2t2 b3t3 S 拟合S形曲线Y exp b0 b1 t Exponential 拟合指数方程Y b0exp b1t Inverse 数据按Y b0 b1 t进行变换 Power 拟合乘幂曲线模型Y b0Xb1 Logistic 拟合Logistic曲线模型Y 1 1 u b0 b1 t 如选择该线型则要求输入上界 Save选项 预测个案 用于设定值变量为时间序列时的预测值 保存变量 实例 在不同温度下 对金属强度进行了8次测试 数据如下利用曲线参数估计方法分析温度和强度的关系 结果分析 线性模型的主要结果模型摘要该表显示模型的拟合情况 其中判定系数为0 67375 调整系数为0 61938 估计值的标准误差为93 909 方差分析表 从表中可以看出 回归的均方为109273 91 剩余的均方为8818 93 F检验统计量的观察值为12 391 p值为0 125 回归系数 常数项系数为348 69 回归系数为 374 43 线性回归参数的标准误差为106 37 标准化回归系数为 0 821 三次函数模型的主要结果 模型摘要判定系数是多少 校正系数是多少 标准误差 方差分析表 回归均方 剩余均方 F统计量的观察值 回归系数 Cubic 拟合三次方程Y b0 b1t b2t2 b3t3常数项回归系数 标准化回归系数 参数的标准误差 指数模型的主要结果 模型摘要判定系数是多少 校正系数是多少 标准误差 方差分析表 回归均方 剩余均方 F统计量的观察值 回归系数 Exponential 拟合指数方程Y b0exp b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 木制家具生产合同
- 2024聘请常年法律顾问合同协议书
- 土地租赁合同税务问题
- 股权扩股协议书格式
- 建筑设计培训就业协议书
- 3.1.1 勾股定理 同步课件
- 七年级地理上册-4.2-世界的语言和宗教同课异构教案1-新人教版
- 2024版发起人协议书范例
- 《未来的建筑》示范公开课教学课件【小学三年级美术下册】
- 2024年多应用场景童鞋购销合同
- 生物质能发电技术应用中存在的问题及优化方案
- GA 1809-2022城市供水系统反恐怖防范要求
- 幼儿园绘本故事:《老虎拔牙》 课件
- 2021年上半年《系统集成项目管理工程师》真题
- 一个冬天的童话 遇罗锦
- GB/T 706-2008热轧型钢
- 实验六 双子叶植物茎的初生结构和单子叶植物茎的结构
- GB/T 25032-2010生活垃圾焚烧炉渣集料
- GB/T 13610-2020天然气的组成分析气相色谱法
- 《彩虹》教案 省赛一等奖
- 2023年湖南建筑工程初中级职称考试基础知识
评论
0/150
提交评论