【全程复习方略】高中数学 4.5数系的扩充与复数的引入课时提能训练 苏教版.doc_第1页
【全程复习方略】高中数学 4.5数系的扩充与复数的引入课时提能训练 苏教版.doc_第2页
【全程复习方略】高中数学 4.5数系的扩充与复数的引入课时提能训练 苏教版.doc_第3页
【全程复习方略】高中数学 4.5数系的扩充与复数的引入课时提能训练 苏教版.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【全程复习方略】2013版高中数学 4.5数系的扩充与复数的引入课时提能训练 苏教版(45分钟 100分)一、填空题(每小题5分,共40分)1.(2012扬州模拟)若复数z满足(1+i)z=1-3i,则复数z在复平面上的对应点在第_象限.2.(2011广东高考改编)设复数z满足(1+i)z=2,其中i为虚数单位,则z=_.3.复数z=1+i,为z的共轭复数,则z-z-1=_.4.(2011辽宁高考改编)a为正实数,i为虚数单位,则a=_.5.(2012无锡模拟)若z(1+i)=1-i(i是虚数单位),则z的共轭复数=_.6.i为虚数单位, =_.7.(2012盐城模拟)已知复数z=(2-i)i(i为虚数单位),则|z|=_.8.定义运算=ad-bc,复数z满足=1+i,则z=_.二、解答题(每小题15分,共45分)9.(2011上海高考)已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z2.10.复数z1=1+2i,z2=-2+i,z3=-1-2i,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数.11.已知复数z满足|z|=1,求|z-(1+i)|的最大值与最小值.【探究创新】(15分)已知z1,z2为复数,(3i)z1为实数,且|z2|,求z2.答案解析1.【解析】因为z对应的点在第三象限.答案:三【方法技巧】复数的几何意义的作用复数的几何意义可以让我们运用数形结合思想把复数、向量、解析几何有机地结合在一起,能够更加灵活地解决问题.高考中对复数几何意义的考查主要集中在复数对应点的位置、加减法的几何意义、模的意义等.2.【解题指南】可由(1+i)z=2得再由复数的除法运算法则求得z.也可以设出z=a+bi,然后利用向量相等列出方程组,求出a,b的值.【解析】由(1+i)z=2得=1-i.答案:1-i【一题多解】设z=a+bi,则(1+i)(a+bi)=a-b+(a+b)i=2,z=1-i.3.【解题指南】先求出z的共轭复数,然后利用复数的运算法则计算即可.【解析】=1-i,z-z-1=(1+i)(1-i)-(1+i)-1=-i.答案:-i4.【解析】因为故可化为|1-ai|=2,又由于a为正实数,所以1+a2=4,得a=.答案:5.【解析】答案:i6.【解析】=-i+i-i+i=0.答案:0【变式备选】(1)已知复数是z的共轭复数,则z=_.【解析】方法一:方法二:答案:(2)已知复数z=1-i,则=_.【解析】答案:-2i7.【解析】|z|=|(2-i)i|=|2-i|i|=.答案:8.【解析】由题意知zi-i=1+i,=-(1+2i)i=2-i.答案:2-i9.【解析】设z2=a+2i(ar),由已知复数z1满足(z1-2)(1+i)=1-i,得z1=2-i,又已知z1z2=(2-i)(a+2i)=(2a+2)+(4-a)i是实数,则虚部4-a=0,即a=4,则复数z2=4+2i.【变式备选】复数z1(10-a2)i,z2(2a-5)i,若是实数,求实数a的值.【解析】是实数,a22a-150,解得a-5或a3.又(a5)(a-1)0,a-5且a1,故a3.10.【解析】如图,z1、z2、z3分别对应点a、b、c.所对应的复数为z2-z1=(-2+i)-(1+2i)=-3-i,在正方形abcd中, 所对应的复数为-3-i,又所对应的复数为z3-(-3-i)=(-1-2i)-(-3-i)=2-i,第四个顶点对应的复数为2-i.11.【解题指南】|z|=1复数z对应的点是以原点为圆心,1为半径的圆上的点所求即为圆上的点到点(1,1)的距离的最大值、最小值.【解析】因为|z|=1,所以z对应的点是单位圆x2+y2=1上的点,而|z-(1+i)|表示单位圆上的点到(1,1)点的距离.所以最大值为最小值为【探究创新】【解题指南】可以不设代数形式,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论