LED的光衰原因.doc_第1页
LED的光衰原因.doc_第2页
LED的光衰原因.doc_第3页
LED的光衰原因.doc_第4页
LED的光衰原因.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

LED的光衰原因针对LED的光衰主要有以下二大因素:一、LED产品本身品质问题:1、采用的芯片不好,亮度衰减较快。2、生产工艺存在缺陷,芯片散热不能良好的从PIN脚导出,导致芯片温度过高使芯片衰减加剧。二、使用条件问题:1、LED为恒流驱动,有部分LED采用电压驱动原因使LED衰减过来。2、驱动电流大于额定驱动条件。其实导致led光衰的原因很多,最关键的还是热的问题芯片本身的热阻银胶的影响基板的散热效果发光二极管与发光颜色及波长一些发光二极管产品,尤其是手电筒上的发光二极管有不同的光束颜色。这可不是使用了什么暗藏机关来使它们看上去漂亮,不同的光颜色有着不同的应用。下面就简单介绍一下最常见颜色和它的实际用途。 白色光有完美的颜色特性,但它会损害适应暗光的视觉,一定光源熄灭后需要一定的时间来重新适应。 红色光通常是用作夜视。红光不会引起你瞳孔过分收缩和一旦红光熄灭时眼睛不需要重新适应黑暗。红色也通常在单色相片处理被用作为“安全”颜色因为它不会损坏正在冲印的底片黄色光有着红色光和白色光的一些优点。黄色光另外一优点就是当你阅读时减少因为长时间阅读而导致眼睛疲劳的反射和眩目的光。 绿色光也可以用作为夜视,绿色光还特别适用于在夜晚的时候阅读地图或图表。它还不那么容易被夜视装备发现,便很容易被人眼发现,绿色光的亮度比红色光低。 蓝色光可被用作在夜晚阅读地图和通常很受军事人员青睐,因为蓝色光增加了对比度的水平。它还可以用作戏院和演出时的后台工作灯色。 蓝绿光有着相似绿光和蓝光的夜视优点,但随着蓝绿光的颜色特性的提高,一些用户因为这个原因喜欢用蓝绿光。 红外线红光是与夜视装备一起使用的。否则人的眼睛是看不到红外线光的。 紫外光通常是用作识别钞票是否伪造,一些紫外发光二极管照明物在夜总会和派对上很受欢迎,它们被用来使荧光物质发出更亮的光。 光的颜色和它的波长 光的颜色是否可以看见是由它的波长决定的,光的波长是以纳米为单位的也说是十亿分之一米。发光二极管发出的光几乎都是一致的也就是说它几乎都是在一个波长,发出非常纯的颜色。以下是光的颜色和它的波长。 中红外线红光 4600nm - 1600nm -不可见光 低红外线红光 1300nm - 870nm -不可见光850nm - 810nm -几乎不可见光 近红外线光780nm -当直接观察时可看见一个非常暗淡的樱桃红色光770nm -当直接观察时可看见一个深樱桃红色光740nm -深樱桃红色光 红色光700nm - 深红色660nm - 红色645nm - 鲜红色630nm - 620nm - 橙红 橙色光615nm - 红橙色光610nm - 橙色光605nm - 琥珀色光 黄色光590nm - “钠“黄色585nm -黄色575nm - 柠檬黄色/淡绿色 绿色570nm - 淡青绿色565nm - 青绿色555nm - 550nm - 鲜绿色525nm - 纯绿色 蓝绿色505nm - 青绿色/蓝绿色500nm - 淡绿青色495nm - 天蓝色蓝色475nm - 天青蓝470nm - 460nm-鲜亮蓝色450nm - 纯蓝色 蓝紫色444nm - 深蓝色30nm - 蓝紫色 紫色405nm - 纯紫色400nm - 深紫色 近紫外线光395nm -带微红的深紫色 UV-A型紫外线光370nm -几乎是不可见光,受木质玻璃滤光时显现出一个暗深紫色。 白光发光二极管有微黄色的到略带紫色的白光。白光发光二极管的色温范围有低至4000K到12000K。常见的白光发光二极管通常都是6500- 8000K范围内。激光二极管激光二极管本质上是一个半导体二极管,按照PN结材料是否相同,可以把激光二极管分为同质结、单异质结(SH)、双异质结(DH)和量子阱(QW)激光二极管。量子阱激光二极管具有阈值电流低,输出功率高的优点,是目前市场应用的主流产品。 同激光器相比,激光二极管具有效率高、体积小、寿命长的优点,但其输出功率小(一般小于2mW),线性差、单色性不太好,使其在有线电视系统中的应用受到很大限制,不能传输多频道,高性能模拟信号。在双向光接收机的回传模块中,上行发射一般都采用量子阱激光二极管作为光源。LED使用注意事项(1)LED的特性接近稳二极管,工作电压变化0.1V,工作电流可能变化20mA左右。为了安全,普通情况下使用串联限流电阻,极大的能量损失显然不适合太阳能草坪灯,并且LED亮度随工作电压而变化。升压电路是一个好办法,也可以用简单的恒流电路,总之一定要自动限流,否则将会损坏LED。(2)一般LED的峰值电流50100mA,反向电压在6V左右,注意不可超过这个极限,尤其在太阳能电池反接或者蓄电池空载,升压电路峰值电压过高时很可能超过这个极限,损坏LED。(3)LED温度特性不好,温度上升5,光通量下降3%,夏季使用更要注意。(4)工作电压离散性大,同一型号,同一批次的LED工作电压都有一定差别,不宜并联使用。若一定要并联使用,就应该充分考虑均流的情况。(5)超高亮白光LED色温为640030000k,目前低色温的超高亮白光LED尚未进入市场,所以用超高亮白光LED制造的太阳能草坪灯光穿透能力比较差,这点在光学设计上要引起注意。(6)静电对超高亮白光LED影响很大,在安装时要有防静电设施,工人要佩带防静电手腕,受静电伤害的超高亮白光LED当时可能凭眼睛看不出来,但是使用寿命将会变短。荧光粉知识LED用荧光粉尚待创新 近年来,在照明领域最引人关注的事 件是半导体照明的兴起。20世纪90年代中期,日本日亚化学公司的Nakamura等人经过不懈努力,突破了制造蓝光发光二极管(LED)的关键技术,并 由此开发出以荧光材料覆盖蓝光LED产生白光光源的技术。半导体照明具有绿色环保、寿命超长、高效节能、抗恶劣环境、结构简单、体积小、重量轻、响应快、 工作电压低及安全性好的特点,因此被誉为继白炽灯、日光灯和节能灯之后的第四代照明电光源,或称为21世纪绿色光源。美国、日本及欧洲均注入大量人力和财 力,设立专门的机构推动半导体照明技术的发展。 LED实现白光有多种方式,而开发较早、已实现产业化的方式是在LED芯片上涂敷荧光粉而实现白光发射。 LED采用荧光粉实现白光主要有三种方法,但它们并没有完全成熟,由此严重地影响白光LED在照明领域的应用。具体来说,第一种方法是在蓝色LED芯片 上涂敷能被蓝光激发的黄色荧光粉,芯片发出的蓝光与荧光粉发出的黄光互补形成白光。该技术被日本Nichia公司垄断,而且这种方案的一个原理性的缺点就 是该荧光体中Ce3+离子的发射光谱不具连续光谱特性,显色性较差,难以满足低色温照明的要求,同时发光效率还不够高,需要通过开发新型的高效荧光粉来改 善。 第二种实现方法是蓝色LED芯片上涂覆绿色和红色荧光粉,通过芯片发出的蓝光与荧光粉发出的绿光和红光复合得到白光,显色性较好。但是,这种方法所用荧光粉有效转换效率较低,尤其是红色荧光粉的效率需要较大幅度的提高。 第三种实现方法是在紫光或紫外光LED芯片上涂敷三基色或多种颜色的荧光粉,利用该芯片发射的长波紫外光(370nm-380nm)或紫光(380nm -410nm)来激发荧光粉而实现白光发射,该方法显色性更好,但同样存在和第二种方法相似的问题,且目前转换效率较高的红色和绿色荧光粉多为硫化物体 系,这类荧光粉发光稳定性差、光衰较大,因此开发高效的、低光衰的白光LED用荧光粉已成为一项迫在眉睫的工作。 我们是国内率先进行LED用高效低光衰荧光粉研究的研究机构。最近,通过与我国台湾合作伙伴的联合攻关,多种采用荧光粉的彩色LED被开发出来了。 采用荧光粉来制作彩色LED有以下优点: 首先,虽然不使用荧光粉,就能制备出红、黄、绿、蓝、紫等不同颜色的彩色LED,但由于这些不同颜色LED的发光效率相差很大,采用荧光粉以后,可以利 用某些波段LED发光效率高的优点来制备其他波段的LED,以提高该波段的发光效率。例如有些绿色波段的LED效率较低,台湾厂商利用我们提供的荧光粉制 备出一种效率较高,被其称为苹果绿的LED用于手机背光源,取得了较好的经济效益。 其次,LED的发光波长现在还很难精确控 制,因而会造成有些波长的LED得不到应用而出现浪费,例如需要制备470nm的LED时,可能制备出来的是从455nm到480nm范围很宽的LED, 发光波长在两端的LED只能以较低廉的价格处理掉或者废弃,而采用荧光粉可以将这些所谓的废品转化成我们所需要的颜色而得到利用。 第三,采用荧光粉以后,有些LED的光色会变得更加柔和或鲜艳,以适应不同的应用需要。当然,荧光粉在LED上最广泛的应用还是在白光领域,但由于其特 殊的优点,在彩色LED中也能得到一定的应用,但荧光粉在彩色LED上的应用还刚刚起步,需要进一步进行深入的研究和开发。超高亮led,超高亮LED优缺点及其应用1、 超高亮LED的特点与传统的照明灯相比,超高亮LED具有如下优点:1)寿命长,可靠耐用,维护费用极为低廉LED可连续使用105h,比普通白炽灯泡长100倍;2)高效率现在已经可以达到201mw预计到2005年将达到501mW1,LED)的光谱几乎全部集中于可见光频段,其发光效率可达8090,LED比节能灯还要节能14;3)色彩鲜艳,光色单纯 以12英寸的红色交通信号灯为例,它采用低光效的140W白炽灯作为光源,所产生的2000lm的白光经红色滤光片后,光损失90,只剩下2001m的红光,而在Lumileds Lighting公司采用18个红色LED光源设计的灯中,包括电路损失在内,仅耗电14W,即可产生同样的光效;4)点亮速度快 汽车信号灯是LED光源应用的一个重要领域,由于LED响应速度快(ns级),在汽车上安装高位LED刹车灯,可以减少汽车追尾事故的发生。近年来高亮LED已经在汽车的近光灯中得到了应用,例如德国奥迪公司的奥迪A86.O,意大利Fioravanti公司在2003年日内瓦车展上推出的概念车Yak,美国福特公司不久前在底特律车展上推出的Model U都开始将高亮LED用于前照灯的设计中。尽管超高亮LED具有许多优点,但目前仍存在下述缺点:1)功率低市面上的单体LED功率一般在5W以下,还没有出现更大功率的LED,这是目前LED难以成为照明首选的最大瓶颈;2)需要严格控制温度 LED是一种半导体材料,与普通二极管一样具有PN结,由于高亮二极管的功率相对比较大,所以与功率半导体器件相同,需要考虑散热问题,结温过高会直接影响LED的寿命,并且会增大LED的光衰,情况严重的会将LED烧坏;3)价格高除了功率低,价格是LED难以成为照明的主要因素,虽然LED目前已被大多数人认识,也被多数人看好,但其高昂的价格难以被消费者接受,目前单体黄色LED大约O6元个,绿色与蓝色单体LED在18元个左右,白色LED的价格达到了2.25.5元个左右;如果将几十个单体LED组合,其成本将大大增加,如把一个LED安装在草坪灯里,其单价就相当于一般草坪灯的几倍,LED要成为未来照明的主流光源,就一定要朝着大流明方向发展,成本才有可能降低,市场才有可能突破。 2、超高亮LED的特性HPWA-xH00是Lumileds Lighting公司的一种超高亮LED,本文以它为例分析超高亮LED的特性。图1为正向压降(VF)和正向电流的(IF)关系曲线,由曲线可知,当正向电压超过某个阈值(约2V),即通常所说的导通电压之后,可近似认为,IF与VF成正比。当前超高亮LED的最高IF可达1A,而VF通常为34V。由于LED的光特性通常都描述为电流的函数,而不是电压的函数,光通量(V)与IF的关系曲线如图2所示,因此,采用恒流源驱动可以更好地控制亮度。此外,由表1可知LED的正向压降变化范围比较大(最大可达1V以上),而由图1中的VF-IF曲线可知,VF的微小变化会引起较大的,IF变化,从而引起亮度的较大变化。所以,采用恒压源驱动不能保证LED亮度的一致性,并且影响LED的可靠性、寿命和光衰。因此,超高亮LED通常采用恒流源驱动。 3 超高亮LED的驱动电路由于受到LED功率水平的限制,通常需同时驱动多个LED以满足亮度需求,因此,需要专门的驱动电路来点亮LED。下面简要介绍LED驱动的主要电路。31 阻限流电路如32线性调节器线性调节器的核心是利用工作于线性区的功率三极管或MOSFFET作为一动态可调电阻来控制负载。线性调节器有并联型和串联型两种。由于分流调节器需要串联一个电阻,所以效率不高,并且在输入电压变化范围比较宽的情况下很难做到恒定的调节。图5(b)所示为串联型调节器,当输入电33开关调节器上述驱动技术不但受输入电压范围的限制,而且效率低。在用于低功率的普通LED驱动时,由于电流只有几个mA,因此损耗不明显,当用作电流有几百mA甚至更高的高亮LED的驱动时,功率电路的损耗就成了比较严重的问题。开关电源是目前能量变换中效率最高的,可以达到90以上。Buek、Boost和Buck-Boost等功率变换器都可以用于LED的驱动,只是为了满足LED的恒流驱动,采用检测输出电流而不是检测输出电压进行反馈控制。图6(a)为采用Buck变换器的LED驱动电路,与传统的Buek变换器不同,开关管S移到电感L的后面,使得S源极接地,从而方便了S的驱动,LED与L串联,而续流二极管D与该串联电路反并联,该驱动电路不但简单而且不需要输出滤波电容,降低了成本。但是,Buck变换器是降压变换器,不适用于输入电压低或者多个LED串联的场合。 4 超高亮LED的驱动控制芯片介绍根据高亮LED大功率恒流驱动的特点,很多公司都推出了高亮LED的专用驱动控制芯片,例如:Melexis、lnfinton(英飞凌)、Lienear Technology(凌特)、Supenex Inc、Analog。Devices(ADI)等。41 MLxl0801芯片介绍MLXl0801是Melexi8公刊的一款针对汽车应用的LED驱动芯片,该芯片还可以用于继电器等线圈的驱动,以及用作电子熔断器。MLx10801芯片的原理框图如图7所示,它集成了功率MOSFET,最大驱动电流为350mA。用作LED驱动时,它具有如下特点:外邵应用电路简单;内部外部温度检测保护;高效率的开关电源驱动;可以通过PWM输入控制亮度;LED的参数可以调节并可以存储到片内NV存储器中。MLX10801虽然仅有8个管脚,但功能强大,表2为MLXl0801的管脚功能介绍。 4.2 大功率LED驱动芯片的比较当前主要大功率IED驱动控制芯片性能比较,在应用大功率IED驱动控制芯片时,可以依据不同的应用场合进行选择:1)当需要较高功率时可选择功率器件没有集成在芯片内的控制器,这样就可以按照实际的功率需求单独选择功率器件;2)当需要较高的变换效率时,如便携式设备等,可选择开关电源类的驱动电路;3)当应用于可靠性高的设备中,可选择具有温度保护、故障报警等控制功能全面的芯片。LED相关技术参数符号CT-势垒电容Cj-结(极间)电容, 表示在二极管两端加规定偏压下,锗检波二极管的总电容Cjv-偏压结电容Co-零偏压电容Cjo-零偏压结电容Cjo/Cjn-结电容变化Cs-管壳电容或封装电容Ct-总电容CTV-电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比CTC-电容温度系数Cvn-标称电容IF -正向直流电流(正向测试电流)。锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流IF(AV)-正向平均电流IFM(IM)-正向峰值电流(正向最大电流)。在额定功率下,允许通过二极管的最大正向脉冲电流。发光二极管极限电流。IH-恒定电流、维持电流。Ii- 发光二极管起辉电流IFRM-正向重复峰值电流IFSM-正向不重复峰值电流(浪涌电流)Io-整流电流。在特定线路中规定频率和规定电压条件下所通过的工作电流IF(ov)-正向过载电流IL-光电流或稳流二极管极限电流 光行天下.NET-ID-暗电流IB2-单结晶体管中的基极调制电流IEM-发射极峰值电流IEB10-双基极单结晶体管中发射极与第一基极间反向电流IEB20-双基极单结晶体管中发射极向电流ICM-最大输出平均电流IFMP-正向脉冲电流IP-峰点电流IV-谷点电流IGT-晶闸管控制极触发电流IGD-晶闸管控制极不触发电流IGFM-控制极正向峰值电流IR(AV)-反向平均电流IR (In)-反向直流电流(反向漏电流)。在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电流;硅开关二极管两端加反向工作电压VR时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流。IRM-反向峰值电流IRR-晶闸管反向重复平均电流IDR-晶闸管断态平均重复电流IRRM-反向重复峰值电流IRSM-反向不重复峰值电流(反向浪涌电流)Irp-反向恢复电流Iz-稳定电压电流(反向测试电流)。测试反向电参数时,给定的反向电流Izk-稳压管膝点电流IOM-最大正向(整流)电流。在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗检波二极管的最大工作电流IZSM-稳压二极管浪涌电流IZM-最大稳压电流。在最大耗散功率下稳压二极管允许通过的电流iF-正向总瞬时电流iR-反向总瞬时电流ir-反向恢复电流Iop-工作电流Is-稳流二极管稳定电流f-频率n-电容变化指数;电容比Q-优值(品质因素)vz-稳压管电压漂移di/dt-通态电流临界上升率dv/dt-通态电压临界上升率PB-承受脉冲烧毁功率PFT(AV)-正向导通平均耗散功率PFTM-正向峰值耗散功率PFT-正向导通总瞬时耗散功率Pd-耗散功率PG-门极平均功率PGM-门极峰值功率PC-控制极平均功率或集电极耗散功率Pi-输入功率PK-最大开关功率PM-额定功率。硅二极管结温不高于150度所能承受的最大功率PMP-最大漏过脉冲功

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论