函数对称性与周期性关系.docx_第1页
函数对称性与周期性关系.docx_第2页
函数对称性与周期性关系.docx_第3页
函数对称性与周期性关系.docx_第4页
函数对称性与周期性关系.docx_第5页
免费预览已结束,剩余6页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2017年高考复习数学函数对称性与周期性关系 【知识梳理】一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数,如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,都有都成立,那么就把函数叫做周期函数,不为零的常数T叫做这个函数的周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。2、 对称性定义(略),请用图形来理解。3、 对称性:我们知道:偶函数关于y(即x=0)轴对称,偶函数有关系式 奇函数关于(0,0)对称,奇函数有关系式 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数关于对称 也可以写成 或 简证:设点在上,通过可知,即点上,而点与点关于x=a对称。得证。 若写成:,函数关于直线 对称 (2)函数关于点对称 或 简证:设点在上,即,通过可知,所以,所以点也在上,而点与关于对称。得证。 若写成:,函数关于点 对称 (3)函数关于点对称:假设函数关于对称,即关于任一个值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于对称。但在曲线c(x,y)=0,则有可能会出现关于对称,比如圆它会关于y=0对称。4、 周期性: (1)函数满足如下关系系,则 A、 B、 C、或(等式右边加负号亦成立) D、其他情形 (2)函数满足且,则可推出即可以得到的周期为2(b-a),即可以得到“如果函数在定义域内关于垂直于x轴两条直线对称,则函数一定是周期函数” (3)如果奇函数满足则可以推出其周期是2T,且可以推出对称轴为,根据可以找出其对称中心为(以上)。如果偶函数满足则亦可以推出周期是2T,且可以推出对称中心为,根据可以推出对称轴为 (以上) (4)如果奇函数满足(),则函数是以4T为周期的周期性函数。如果偶函数满足(),则函数是以2T为周期的周期性函数。二、 两个函数的图象对称性1、 与关于X轴对称。换种说法:与若满足,即它们关于对称。2、 与关于Y轴对称。换种说法:与若满足,即它们关于对称。3、 与关于直线对称。换种说法:与若满足,即它们关于对称。4、 与关于直线对称。换种说法:与若满足,即它们关于对称。5、 关于点(a,b)对称。换种说法:与若满足,即它们关于点(a,b)对称。6、 与关于直线对称。【典型例题】1.定义在R上的函数,若总有成立,则函数的图象是关于直线成轴对称图形。反之,若函数的图象关于直线成轴对称图形,则必有推论,对于定义在R上的函数,若有,则图象关于直线成轴对称图形,反之亦真。证明:若对,总有,设点,在的图象上,点关于的对称点,由,则点在函数的图象上,由的任意性知的图象关于直线对称,反之证明略。推论,由显然例1已知,满足且,当时,比较与的大小。解:由知关于对称,故,又由知,则在递减,在上递增。当时,即当时,即例2函数的图象关于直线对称,且时,则当时,的解析式为。解:依条件,设,则,故例3若的图象关于直线对称,则。A. B. C. D.解:由得即例4设对任意,满足且方程恰有6个不同的实根,则此六个实根之和为。A. 18 B. 12 C. 9 D. 0解:依条件知图象关于直线对称,方程六个根必分布在对称轴两侧,且两两对应以(3,0)点为对称中心,故,所以,选A。例5设满足(1),(2)当时,是增函数,定义域,则下列不等式成立的是()A.B.C.D.解:由条件知图象关于直线成轴对称,又及时递增,故选C2.对称性与周期性的关系(1)若函数在R上的图象关于两条直线与对称,则为R上的周期函数。(2)若函数在R上的图象关于直线与点对称,则为R上的周期函数。证:(1)因图象关于及对称,则,故得证(2)由图象关于对称,有又由图象关于点对称,有,即以代有由和以代有又由式得证特别地,图象关于直线对称的偶函数必是周期函数推论,定义在R上的函数满足(1)当为偶函数时,是以为一个周期的周期函数。(2)当为奇函数时,是以为一个周期的周期函数。证:(1)(2)例1已知定义在实数集R上的函数满足:(1);(2);(3)当时,求时,的解析式。解:由(1)(2)知,对任则,例2已知定义在实数集R上的函数满足:(1);(2);(3)当时解析式,求上的解析式。解:设当时,则当时,则又为偶函数,知从而另法:当时,当时,例3函数定义在R上,且对一切满足,设,问方程在区间中至少有几个实根。解:依条件为函数的周期,均为的根,因此在区间上至少有二个根由周期性可知也为的根所以方程在区间中至少有例4若偶函数,满足(1)图象关于直线对称,(2)在区间上是减函数,求证以为最小正周期。证:依条件知为函数的周期,假设函数还存在比更小的周期2,且令,则(1)若,则与在上是减函数矛盾(2)若,即时,与在上是减函数矛盾,所以是的最小正周期。例5已知是定义在实数集R上的偶函数,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论