解一元二次方程—公式法.doc_第1页
解一元二次方程—公式法.doc_第2页
解一元二次方程—公式法.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

21.2.2解一元二次方程公式法一、教学目标1、知识技能:掌握一元二次方程求根公式的推导过程,会运用公式法解一元二次方程 2、数学思考:通过求根公式的推导,培养学生数学推理的严密性及严谨性3、解决问题:培养学生准确快速的计算能力4、情感态度:通过公式的引入,培养学生寻求简便方法的探索精神及创新意识;通过求根公式的推导,渗透分类的思想 二、教学重难点、关键1、重点:求根公式的推导及用公式法解一元二次方程2、难点:对求根公式推导过程中依据的理论的深刻理解3、 关键:掌握一元二次方程的求根公式,并应用求根公式法解一元二次方程三、教学过程(一)复习引入1.用配方法解下列方程 (1)6x2-7x+1=0 (2)4x2-3x=522总结用配方法解一元二次方程的步骤。(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解【设计意图】 复习配方法解一元二次方程,为继续学习公式法引入作好铺垫(二)探索新知如果这个一元二次方程是一般形式ax2+bx+c=0(a0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题已知ax2+bx+c=0(a0)且b2-4ac0,试推导它的两个根为x1=,x2=(分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去) 解:移项,得:ax2+bx=-c 二次项系数化为1,得x2+x=- 配方,得:x2+x+()2=-+()2 即(x+)2= b2-4ac0且4a20 0 直接开平方,得:x+= 即x= x1=,x2=【说明】这里 ()是一元二次方程的求根公式【活动方略】鼓励学生独立完成问题的探究,完成探索后,让学生总结归纳,由形式是一元二次方程的一般形式,得出一元二次方程的求根公式【设计意图】创设问题情境,激发学生兴趣,引出本节内容,导出一元二次方程的求根公式。(三)讲解例题利用公式法解下列方程(1)(2)(3)引导学生总结步骤:确定的值、算出的值、代入求根公式求解在学生归纳的基础上,注意以下几点:(1)一元二次方程的根是由一元二次方程的系数确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在的前提下,把的值代入 ()中,可求得方程的两个根;(3)我们把公式()称为一元二次方程的求根公式,用此公式解一元二次方程的方法叫公式法;(4)由求根公式可以知道一元二次方程最多有两个实数根【设计意图】主体探究、探究利用公式法解一元二次方程的一般方法,进一步理解求根公式(四)反馈练习1、课本练习第1、2题2、补充习题:用公式法解下列方程(1)x2-5x-6=0 (2)7x2+2x=1 (3)3x2-5x=-2 (4)2x2-x-=0【设计意图】检查学生对知识的掌握情况. 四、归纳小结本节课你学到了什么?遇到了什么问题?在解决问题的过程中你采取了什么方法?本节课应掌握: (1)求根公式的概念及其推导过程; (2)公式法的概念; (3)应用公式法解一元二次方程;【设计意图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论