已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
八年级下册 14 7一次函数的应用 情境导入 生活中很多问题都可以归结为一次函数的问题 并可以用一次函数的知识加以解决 下面我们学习一次函数的应用 本节目标 1 巩固一次函数的性质 2 灵活运用变量关系解决相关实际问题 3 有机地把各种数学模型通过函数统一起来使用 提高解决实际问题的能力 预习反馈 1 用一次函数解决实际问题时 一般先根据题意得到一次函数的 再求出自变量的 最后根据一次函数的性质解决实际问题 2 一次函数与二元一次方程的联系 每个二元一次方程都对应一个 且以它的每一个解为坐标的点均在相应的一次函数图象上 表达式 取值范围 一次函数 预习检测 1 某地电话拨号入网有两种收费方式 计时制 0 05元 分 包月制 50元 月 此外 每一种上网方式都得加收通信费0 02元 分 某用户估计一个月上网时间为20小时 你认为采用哪种收费方式较为合算 a 计时制b 包月制c 两种一样d 不确定2 如图是甲 乙两家商店销售同一种产品的销售价y 元 与销售量x 件 之间的函数图象 下列说法 售2件时甲 乙两家售价一样 买1件时买乙家的合算 买3件时买甲家的合算 买1件时 售价约为3元 其中正确的说法有 填序号 b 典例精析 例1 某生产资料门市部出售化肥 每袋售价80元 为了促进销售 规定了优惠办法 买3袋按售价计算 从第四袋开始每袋优惠5 1 写出购买这种化肥的总金额m 元 与购买袋数n的函数表达式 并指出它的自变量的取值范围 2 为了快速得到购买这种化肥的总金额 请你利用这个函数的表达式制作一个购买1 10袋化肥的总金额的对照表 解 1 根据题意 可以知道 当0 n 3时 可得函数的表达式为m 80n 自变量n的取值范围是0 n 3 n是整数 当n 4时 可得函数的表达式为m 80 3 80 1 5 n 3 整理 得m 76n 12 自变量n的取值范围是n 4 n是整数 2 当n依次取1 10时 分别计算出函数的值 得出下表 跟踪训练 在人才招聘会上 某公司承诺 应聘者被录用后第1年的月工资为2000元 在以后的一段时间内 每年的月工资比上一年的月工资增加300元 1 某人在该公司连续工作n年 写出他第n年的月工资y与n的函数表达式 2 他第5年的年收入能否超过40000元 解 1 他第n年的月工资y与n的函数表达式是 y 300 n 1 2000 2 第5年的月工资为 300 5 1 2000 3200 元 所以年收入为 3200 12 38400 元 38400 40000 所以他第5年的年收入不能超过40000元 典例精析 例2 甲 乙两个通信公司分别制定了一种移动电话的收费办法 甲公司规定 每月收取月租50元 每通话1分钟再收费0 4元 乙公司规定 不收取月租费 每通话1分钟收费0 6元 那么 应当怎样选择通信公司才能节省电话费 通话不到1分钟按1分钟收费 分析 据题意 可写出通话费与通话时间的函数关系 在同一坐标系中画出它们的图象 观察图象并通过计算可以得到答案 解 设按照甲 乙两个通信公司的收费标准通话t分钟的话费分别为y1元和y2元 则这两个函数的表达式分别为y1 0 4t 50 t 0 t为整数 和y2 0 6t t 0 t为整数 在同一坐标系中画出它们的图象的示意图 图14 15 两图象的交点为a 交点处有相同的纵坐标 意味着此时两公司的收费相同 令y1 y2 有0 4t 50 0 6t 解这个方程 得t 250 由此可以得到如下结论 1 当每月通话时间为4小时10分时 两公司的收费相同 2 当每月通话时间少于4小时10分时 应选择乙公司 3 当每月通话时间多于4小时10分时 应选择甲公司 1 回忆一次函数的作图过程 说明二元一次方程2x y 3 0的解与一次函数y 2x 3及其图象的关系 2 利用上面的关系 判断下列方程组的解的个数 3 根据上面的经验 探索一元一次方程2x 3 0的解 一元一次不等式2x 3 0的解与一次函数y 2x 3之间的关系 同学们思考并交流 随堂检测 某工厂生产某种产品 已知该工厂正常运转的固定成本为每天12000元 生产该产品的原料成本为每件900元 1 写出每天的生产成本 包括固定成本和原料成本 与产量之间的函数表达式 2 如果每件产品的出厂价为1200元 那么每天生产多少件产品 该工厂才有赢利 解 1 每天的生产成本y1 元 与产量x 件 之间的函数表达式是 y1 900 x 12000 2 每天的销售收入y2 元 与产量x 件 之间的函数表达式是 y2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版委托借款合同范本
- 2024年双方关于量子计算机技术研发合同
- 出租门面合同范本2024年
- 房地产项目联营开发合同样本
- 广告位合作合同模板
- 2024自建房购房合同协议书范本
- 2024报价合同格式范本质押合同格式范本2
- 2024生鲜品采购合同范本
- 2024购销合同范本(手机美容保护膜系统购销)范文
- 房产中介合同样本
- (完整版)病例演讲比赛PPT模板
- 直播合作协议
- 社科类课题申报工作辅导报告课件
- 头痛的诊治策略讲课课件
- 沙利文-内窥镜行业现状与发展趋势蓝皮书
- 国家开放大学一网一平台电大《建筑测量》实验报告1-5题库
- 规范诊疗服务行为专项整治行动自查表
- (新平台)国家开放大学《建设法规》形考任务1-4参考答案
- 精益工厂布局及精益物流规划课件
- 注射液无菌检查的方法学验证方案
- 2023年口腔医学期末复习-牙周病学(口腔医学)考试历年真题荟萃带答案
评论
0/150
提交评论