一次函数——课题学习(选择方案).doc_第1页
一次函数——课题学习(选择方案).doc_第2页
一次函数——课题学习(选择方案).doc_第3页
一次函数——课题学习(选择方案).doc_第4页
一次函数——课题学习(选择方案).doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题学习 选择方案教学设计一、内容和内容解析1内容用函数思想解决方案选择问题选择哪种上网收费方式省钱?2内容解析本课是在学习了函数概念、一次函数有关知识后,通过学生熟悉的宽带上网收费方式的选择,让学生经历体会费用随时间的变化关系是一次函数的关系,确定实际数据整理成函数的模型,即建立了数学模型,从而利用函数图像求数学模型的解,还可以比较几个一次函数的变化率来解决方案选择问题,实现利用数学知识解决实际问题的方法 本课是明确给出多种方案,要求选择使问题解决最优的一种综上所述,本节课教学的重点是:应用一次函数模型解决方案选择问题二、目标和目标解析1目标(1)会用一次函数知识解决方案选择问题,体会函数模型思想;(2)能从不同的角度思考问题,优化解决问题的方法;(3)能进行解决问题过程的反思,总结解决问题的方法2目标解析目标(1)要求能根据问题情景建立一次函数模型,并可以比较几个一次函数的变化率,应用一次函数的性质和图像解决问题,从而感受到函数模型的应用价值目标(2)要求能从不同的角度感知问题中的数量关系,对实际问题中的数量关系既可以用函数的图像表示,也可以用方程和不等式表示,构建不同的模型,用不同的方法解决问题目标(3)要求在解决问题中,能适时调整思路,解决问题后,能对解决问题步骤、程序和方法进行总结提炼三、教学问题诊断分析八年级学生已经学会了用方程和不等式来解决生活中的简单的实际问题,但是用综合应用能力有待加强。特别是由于本节内容具有较强的实际背景,分析实际背景中所包含的变量及其对应关系较复杂,分析起来显的理不清头绪,易迷失解决问题的方向,时间一长就不愿意去尝试了在这方面要给他们创造机会,降低问题的坡度,使他们不难成功,体验成功的乐趣,激发学习兴趣 本课内容是学生熟悉的宽带上网收费方式的选择,如何选择,用什么方法选择很重要,特别是如何从数学的角度去分析本课教学的难点是:分析实际问题背景中所包含的变量和对应关系建立函数模型,解决实际问题,从而使选择方案优化四、教学过程1创设情境,提出问题做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划,是非常必要的。应用数学的知识和方法对各种方案进行比较分析,可以帮助我们清楚地认识各种方案,作出合理的选择。问题:你能说说生活中需要选择方案的例子吗?师生活动:学生各抒已见,引出如何选择上网收费方式的问题设计意图:通过这一环节,让学生体会到选择方案问题在生活中普遍存在,对各种方案运用数学方法作出分析,理性选择最佳方案是必要的,具有现实意义。2实例分析,规划思路在选择方案时,怎样从数学角度进行分析,这就涉及变量的问题,常会用到函数 请看下面问题:例:怎样选取上网收费方式?下表给出A、B、C三种上宽带网的收费方式收费方式月使用费/元包时上网时间/h超时费/(元min)A3025005B5050005C120不限时选取哪种方式能节省上网费?问题1:“选择哪种方式上网”的依据是什么?师生活动:学生讨论得出需要知道三种方式的上网费分别是多少,费用最少的就是最佳方案设计意图:让学生明确问题的目标问题2:哪种方式上网费是会变化的?哪种不变?师生活动:学生讨论得出方式A、B会变化;方式C不变追问1:方式C上网费是多少钱?追问2:方式A、B中,上网费由哪些部分组成的?师生活动:老师引导学生分析得出:(1)当上网时间不超过规定时间时,上网费用=月使用费;(2)当上网时间超过规定时间时,上网费用=月使用费+超时费追问4:影响方式A、B上网费用的因素是什么?师生活动:学生独立思考得出上网时间是影响上网费用的因素问题3:你能用适当的方法表示出方式A的上网费用吗?师生活动:学生小组讨论得出结论方式A:当上网时间不超过25h时,上网费30元;当上网时间超过25h时,上网费30+超时费即上网费30+00560(上网时间25)追问1:设上网时间为t h,上网费用为y元,你能用数学关系式表达y与t的关系吗?师生活动:老师引导,注意时间单位统一,得出结论:当0t25时,y30; 当t25时,y30+00560(t25)即y3t45故问题4:类比方式A,你能用数学关系式表示出方式B中上网费用y与上网时间t的关系吗?师生活动:学生思考后,小组讨论,得出结论,老师适时引导评价 设计意图:让学生从粗到细的感知问题的整体结构和数量关系,感知上网费用随上网时间的变化而变化,并把这两个变量作为研究对象,教师引导学生最终把问题转化为一次函数问题3建立模型,解决问题问题4:你能把上面的问题描述为函数问题吗?师生活动:学生讨论后建立函数模型,把实际问题转化为函数问题设上网时间为t h,方式 A上网费用为元,方式B上网费用为元,方式C上网费用为元,则;,比较、的大小设计意图:让学生在感知问题、分析问题基础上建立一次函数模型,把实际问题转化为一次函数的问题追问1:用什么方法比较函数、的大小呢?师生活动:学生独立思考 有的学生会提出用不等式或方程考虑当t满足什么条件时,分组讨论后,学生会发现由于、是分段函数,用不等式比较麻烦,此时教师引导学生借助函数图象来分析问题由函数图象可知:(1)当时,函数、的图像有一个交点,求出此交点的横坐标,即时, 3t-45=50,解方程,得;(2)当时,函数的图像在函数图像的下方,即时,方式A比方式B省钱;(3)当时,函数的图像在函数图像的上方,即,方式B比方式A省钱;(4)当时,函数、的图像有一个交点,求出此交点的横坐标,即时, 3t-100120,解方程,得t;(5)当t时,函数的图像在函数图像的上方,即,方式C比方式B省钱设计意图:上述分段函数问题,需要在画出函数图象观察函数图象的基础上对上网时间进行分段讨论,让学生感受函数图象与方程、不等式数形结合的方法问题5:上述比较函数值大小结果的实际意义是什么?师生活动:教师引导学生解释上述结果的实际意义当上网时间不超过31小时40分钟时,选择方式 A最省钱;当上网时间为31小时40分钟至73小时20分钟时,选择方案B最省钱;当上网时间超过73小时20分钟时,选择方案C最省钱设计意图:让学生解释函数模型中解的实际意义,从而解决实际问题4小结用一次函数解决实际问题的基本思路:(1)明确问题的目标;(2)发现问题中数量之间的关系;(3)找出问题中变量之间的函数关系;(4)函数问题的解的实际意义设计意图:提高学生反思过程的针对性,展示函数的应用价值,突出建立数学模型的思想方法和实际意义五、目标检测设计如图,、分别表示一种白炽灯和一种节能灯的费用y元(费用灯的售价+电费)与使用时间(小时)的函数图象,若两种灯的使用寿命都为2000小时,照明效果一样(1)根据图象分别求出、的解析式;(2)当照明时间为多少时,两种灯的费用相等?(3)某用户计划照明2500小时,现在购买了一个白炽灯和一个节能灯,请你为该用户设计一个最省钱的用灯方法设计意图:评价学生利用一次函数模型解决方案选择问题的水平课题学习 选择方案同步测试 湖北省咸宁市温泉中学石娟廖文涛一、精心选一选(每小题只有一个正确选项,请把正确选项的代号填在题后的括号内)1某地电话拨号入网有两种收费方式:计时制:005元/分;包月制:50元/月此外,每一种上网方式都得加收通信费002元/分某用户估计一个月上网时间为20小时,你认为采用哪种收费方式较为合算( ) A计时制 B包月制 C两种一样 D不确定考查目的:应用一次函数模型解决实际问题答案:B解析:第一种的费用=每分钟的费用时间+通信费,第二种的费用=月费+通信费采用计时制应付的费用为:元;采用包月制应付的费用为:元所以采用包月制2如图所示,反映了某公司产品的销售收入与销售量的关系,反映了该公司产品的销售成本与销售量的关系,根据图象判断该公司盈利时的销售量是( )A小于4吨 B大于4吨 C等于4吨 D大于或者等于4吨考查目的:利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义答案:B解析:横轴代表销售量,纵轴代表收入,销售收入应看L1,销售成本应看L2(1)当x=4时,所对应L1的纵坐标为4000,所对应L2的纵坐标也为4000,所以x=4时该公司销售收入等于销售成本;(2)当时,L1低于L2高度,所以销售收入小于销售成本,即该公司亏本;(3)当时,L1高于L2高度,所以销售收入大于销售成本,即该公司盈利3小静准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费若累计购物x元,当xa时,在甲商场需付钱数yA=09x+10,当x50时,在乙商场需付钱数为yB下列说法:yB=095x+25;a=100;当累计购物大于50元时,选择乙商场一定优惠些;当累计购物超过150元时,选择甲商场一定优惠些其中正确的说法是( )A B C D考查目的:应用一次函数模型解决实际问题,方案选择、一次函数与方程或不等式的联系答案:C解析:根据题中已知条件,求出yB=095x+25,然后和yA=09x+10相比较,从而得出正确结论yB=095x+50(1-95%)=095x+25,正确;根据题意yA=a+(x-a)90%=09x+01a=09x+10,所以a=100;当累计购物大于50时上没封顶,选择乙商场一定优惠显然不对;当yAyB时,即09x+10095x+25,解之得x150所以当累计购物超过150元时,选择甲商场一定优惠些故选C二、细心填一填(直接把答案填在题中横线上)4如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象下列说法:售2件时甲、乙两家售价一样;买1件时买乙家的合算;买3件时买甲家的合算;买1件时,售价约为3元,其中正确的说法有 (填序号)考查目的:本题考查一次函数的应用及从图象上获取信息的能力答案:解析:两条直线相交时,交点坐标同时适合于两个解析式然后根据图象解答即可得出结论如图,甲乙在x=2时相交,故售2件时两家售价一样,对;由图像可知买1件时乙的价格比甲的价格低,对;买3件时甲的销售价比乙低,对;买乙家的1件售价约为1元,错5某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系 考查目的:此题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意x的取值范围答案:y=解析:本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案根据题意得:y=,整理得;则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是:y=6梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示下列四种说法:一次购买种子数量不超过l0千克时,销售价格为5元/千克;一次购买30千克种子时,付款金额为100元;一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱其中正确的个数是 考查目的:一次函数的应用答案:4个解析:因为(1)0x10时,付款y=5相应千克数;数量不超过l0千克时,销售价格为5元/千克;(2)x10时,付款y=25x+25,超过l0千克的那部分种子的价格为25元/千克;所以由(1)0x10时,付款y=5相应千克数,得数量不超过l0千克时,销售价格为5元/千克是正确;当x=30代入y=25x+25得y=100,故是正确;由(2)x10时,付款y=25x+25,得每千克25元,故是正确;当x=40代入y=25x+25得y=125,当x=20代入y=25x+25=75,两次共150元,两种相差25元,故是正确;四个选项都正确三、用心做一做(解答应写出文字说明、演算步骤或证明过程)7某办公用品销售商店推出两种优惠方法:购1个书包,赠送1支水性笔;购书包和水性笔一律按9折优惠书包每个定价20元,水性笔每支定价5元小丽和同学需买4个书包,水性笔若干支(不少于4支)(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济考查目的:函数建模思想及一次函数与不等式的联系答案:(1),;(2)当x24整数时,选择优惠方法,当x=24时,选择优惠方法,均可,当4x24,当x24整数时,选择优惠方法;设,当x=24时,选择优惠方法,均可;当4x24整数时,选择优惠方法;(3)因为需要购买4个书包和12支水性笔,而1224,购买方案一:用优惠方法购买,需5x+60=512+60=120元;购买方案二:采用两种购买方式,用优惠方法购买4个书包,需要420=80元,同时获赠4支水性笔;用优惠方法购买8支水性笔,需要8590=36元,共需80+36=116元,显然116120,最佳购买方案是:用优惠方法购买

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论