已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【典例精析】1. 利用导数研究函数的图像例1 (2009安徽高考)设b,函数的图像可能是 迁移练习:(2009年湖南卷)若函数的导函数在区间上是增函数,则函数在区间上的图象可能是yababaoxoxybaoxyoxybA B C D2零点问题例2.(2009辽宁卷理)若满足2x+=5, 满足2x+2(x1)=5, +( )A. B.3 C. D.4迁移练习.(2009天津卷理)设函数则( )A在区间内均有零点。 B在区间内均无零点。C在区间内有零点,在区间内无零点。D在区间内无零点,在区间内有零点。 3.利用导数解决函数的单调性问题例3(2008全国高考)已知函数,()讨论函数的单调区间;()设函数在区间内是减函数,求的取值范围【变式1】(2004年全国高考)若函数在区间上是减函数,在区间上是增函数,求实数的取值范围【变式2】(2005年湖南高考)已知函数存在单调递减区间,求a的取值范围;【变式3】(2009浙江高考)已知函数 若函数在区间上不单调,求的取值范围4利用导数的几何意义研究曲线的切线问题例4 (2009江西高考)若存在过点的直线与曲线和都相切,则等于 A或 B或 C或 D或【变式】(2008辽宁高考)设为曲线:上的点,且曲线在点处切线倾斜角的取值范围为,则点横坐标的取值范围为( )ABCD5. 利用导数求函数的极值与最值例5(2009天津卷理)已知函数其中(1) 当时,求曲线处的切线的斜率; (2) 当时,求函数的单调区间与极值。 变式(2008年天津高考)已知函数(),其中若函数仅在处有极值,求的取值范围【真题检测】1、已知函数且是的两个极值点,()求的取值范围;()若,对恒成立。求实数的取值范围2、已知是实数,函数()若,求的值及曲线在点处的切线方程;()求在区间上的最大值3、已知函数 (I)求f(x)在0,1上的极值; (II)若对任意成立,求实数a的取值范围; (III)若关于x的方程在0,1上恰有两个不同的实根,求实数b的取值范围4、已知函数,()当时,求的极值;KS*5U.C#()若存在单调递减区间,求的取值范围5、设 ()求a的值,使的极小值为0; ()证明:当且仅当a=3时,的极大值为46、(2010年福建高考理)()已知函数,。(i)求函数的单调区间;(ii)证明:若对于任意非零实数,曲线C与其在点处的切线交于另
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《药物分析实验》2022-2023学年第一学期期末试卷
- 石河子大学《现代教育技术》2023-2024学年第一学期期末试卷
- 石河子大学《纪录片赏析》2023-2024学年第一学期期末试卷
- 沈阳理工大学《自动检测技术》2022-2023学年第一学期期末试卷
- 沈阳理工大学《色彩构成》2021-2022学年第一学期期末试卷
- 沈阳理工大学《建筑力学》2021-2022学年第一学期期末试卷
- 沈阳理工大学《后期特效》2023-2024学年第一学期期末试卷
- 沈阳理工大学《电工与电子技术实验》2021-2022学年期末试卷
- 沈阳理工大学《测量学》2021-2022学年第一学期期末试卷
- 海商法修改船舶融资租赁合同
- 《市场营销》教案(第3周)市场营销环境分析
- 租地种香蕉合同
- 上海市虹口区2024学年第一学期期中考试初三物理试卷-学生版
- 国开(甘肃)2024年春《地域文化(专)》形考任务1-4终考答案
- 档案整理及数字化服务方案(技术标 )
- 放射性口腔粘膜炎的发病机制及危险因素
- 加油站特殊作业安全管理制度(完整版)
- 质量风险抵押金管理办法
- 村纪检监督小组工作职责
- 《宏观经济学乘数论》PPT课件.ppt
- 警务监督员表态发言(共4篇)
评论
0/150
提交评论