高三数学例题精选精练2.12.doc_第1页
高三数学例题精选精练2.12.doc_第2页
高三数学例题精选精练2.12.doc_第3页
高三数学例题精选精练2.12.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2013高三数学例题精选精练2.12一、选择题(共6个小题,每小题5分,满分30分)1函数f(x)2x43x21在区间,2上的最大值和最小值分别是()a21,b1,c21,0 d0,答案:a2函数f(x)1xsinx在(0,2)上是()a增函数b减函数c在(0,)上增,在(,2)上减d在(0,)上减,在(,2)上增解析:f(x)1cosx0,f(x)在(0,2)上递增答案:a3f(x)的导函数f(x)的图象如图所示,则函数f(x)的图象最有可能的是图中的()解析:x(,2)(0,)时f(x)0,则f(x)在r上是增函数,故不存在极值点答案:c5已知f(x)x3ax在1,)上是单调增函数,则a的最大值是()a0 b1c2 d3解析:f(x)3x2a0在1,)上恒成立,即:a3x2在1,)上恒成立,而(3x2)min3123.a3,故amax3.答案:d6f(x)是定义在(0,)上的非负可导函数,且满足xf(x)f(x)0,对任意正数a,b,若ab,则必有()aaf(b)bf(a) bbf(a)af(b)caf(a)f(b) dbf(b)f(a)解析:xf(x)f(x)0,又f(x)0,xf(x)f(x)0,设y,则y0,故y为减函数或常函数又a0,则af(b)bf(a)答案:a二、填空题(共3小题,每小题5分,满分15分)7函数f(x)x2lnx的最小值为_解析:得x1,得0x1.f(x)在x1时取最小值f(1)ln1.答案:8已知函数f(x)x3ax2bxa2在x1处取极值10,则f(2)_.解析:f(x)3x22axb,由题意即得a4或a3.但当a3时,f(x)3x26x30,故不存在极值,a4,b11,f(2)18.答案:189给出定义:若函数f(x)在d上可导,即f(x)存在,且导函数f(x)在d上也可导,则称f(x)在d上存在二阶导函数,记f(x)(f(x).若f(x)0在d上恒成立,则称f(x)在d上为凸函数以下四个函数在(0,)上不是凸函数的是_(把你认为正确的序号都填上)f(x)sinxcosx;f(x)lnx2x;f(x)x32x1;f(x)xex.解析:对于,f(x)(sinxcosx),x(0,)时,f(x)0恒成立;对于,f(x),在x(0,)时,f(x)0恒成立;对于,f(x)6x,在x(0,)时,f(x)0恒成立,所以f(x)xex不是凸函数答案:三、解答题(共3小题,满分35分)10已知函数f(x)x3ax2bx(a,br)若yf(x)图象上的点(1,)处的切线斜率为4,求yf(x)的极大值解:(1)f(x)x22axb,由题意可知:f(1)4且f(1),即解得f(x)x3x23x,f(x)x22x3(x1)(x3)令f(x)0,得x11,x23.由此可知,当x变化时,f(x),f(x)的变化情况如下表:x(,1)1(1,3)3(3,)f(x)00f(x)极大值极小值当x1时,f(x)取极大值.11已知函数f(x)xlnx.(1)求f(x)的最小值;(2)讨论关于x的方程f(x)m0(mr)的解的个数解:(1)f(x)的定义域为(0,),f(x)lnx1,令f(x)0,得x.当x(0,)时,f(x),f(x)的变化情况如下:xf(x)0f(x)极小值所以,f(x)在(0,)上最小值是f.(2)当x时,f(x)单调递减且f(x)的取值范围是;当x时,f(x)单调递增且f(x)的取值范围是.下面讨论f(x)m0的解:当m时,原方程无解;当m或m0时,原方程有唯一解;当m0时,原方程有两个解12已知函数f(x)(a1)lnxax21.(1)讨论函数f(x)的单调性;(2)设a0,故f(x)在(0,)上单调递增;当a1时,f(x)0,故f(x)在(0,)上单调递减;当1a0;x( ,)时,f(x)0.故f(x)在(0, )上单调递增,在( ,)上单调递减(2)不妨假设x1x2.而a1,由(1)知f(x)在(0,)上单调递减,从而x1,x2(0,),|f(x1)f(x2)|4|x1x2|等价于x1,x2(0,),f(x2)4x2f(x1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论