山东省高中数学《2.2.2 用样本的数字特征估计总体的数字特征》教案 新人教A版必修3.doc_第1页
山东省高中数学《2.2.2 用样本的数字特征估计总体的数字特征》教案 新人教A版必修3.doc_第2页
山东省高中数学《2.2.2 用样本的数字特征估计总体的数字特征》教案 新人教A版必修3.doc_第3页
山东省高中数学《2.2.2 用样本的数字特征估计总体的数字特征》教案 新人教A版必修3.doc_第4页
山东省高中数学《2.2.2 用样本的数字特征估计总体的数字特征》教案 新人教A版必修3.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2.2 用样本的数字特征估计总体的数字特征整体设计教学分析 教科书结合实例展示了频率分布的众数、中位数和平均数.对于众数、中位数和平均数的概念,重点放在比较它们的特点,以及它们的适用场合上,使学生能够发现,在日常生活中某些人通过混用这些(描述平均位置的)统计术语进行误导.另一方面,教科书通过思考栏目让学生注意到,直接通过样本计算所得到的中位数与通过频率直方图估计得到的中位数不同.在得到这个结论后,教师可以举一反三,使学生思考对于众数和平均数,是否也有类似的结论.进一步,可以解释对总体众数、总体中位数和总体平均数的两种不同估计方法的特点.在知道样本数据的具体数值时,通常通过样本计算中位数、平均值和众数,并用它们估计总体的中位数、均值和众数.但有时我们得到的数据是整理过的数据,比如在媒体中见到的频数表或频率表,用教科书中的方法也可以得到总体的中位数、均值和众数的估计. 教科书通过几个现实生活的例子,引导学生认识到:只描述平均位置的特征是不够的,还需要描述样本数据离散程度的特征.通过对如何描述数据离散程度的探索,使学生体验创造性思维的过程.教科书通过例题向学生展示如何用样本数字特征解决实际问题,通过阅读与思考栏目“生产过程中的质量控制图”,让学生进一步体会分布的数字特征在实际中的应用.三维目标1.能利用频率分布直方图估计总体的众数、中位数、平均数;能用样本的众数、中位数、平均数估计总体的众数、中位数、平均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法;初步体会、领悟“用数据说话”的统计思想方法;通过对有关数据的搜集、整理、分析、判断,培养学生“实事求是”的科学态度和严谨的工作作风.2.正确理解样本数据标准差的意义和作用,学会计算数据的标准差;能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识.3.在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法;会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辨证地理解数学知识与现实世界的联系.重点难点教学重点:根据实际问题对样本数据中提取基本的数据特征并作出合理解释,估计总体的基本数字特征;体会样本数字特征具有随机性.教学难点:用样本平均数和标准差估计总体的平均数与标准差;能应用相关知识解决简单的实际问题.课时安排 2课时教学过程第1课时 众数、中位数、平均数导入新课思路1 在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下甲运动员:7,8,6,8,6,5,8,10,7,4;乙运动员:9,5,7,8,7,6,8,6,7,7. 观察上述样本数据,你能判断哪个运动员发挥得更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究.用样本的数字特征估计总体的数字特征.(板书课题)思路2 在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的平均使用寿命,我们怎样了解灯泡的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了.于是,需要通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征.推进新课新知探究提出问题(1)什么是众数、中位数、平均数?(1)如何绘制频率分布直方图?(3)如何从频率分布直方图中估计众数、中位数、平均数?活动:那么学生回忆初中所学的一些统计知识,思考后展开讨论,教师提示引导.讨论结果:(1)初中我们曾经学过众数(在一组数据中,出现次数最多的数称为众数)、中位数(在按大小顺序排列的一组数据中,居于中间的数称为中位数)、平均数(一般是一组数据和的算术平均数)等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息.(2)画频率分布直方图的一般步骤为:计算一组数据中最大值与最小值的差,即求极差;决定组距与组数;将数据分组;列频率分布表;画频率分布直方图.(3)教材前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25 t(最高的矩形的中点),它告诉我们,该市的月均用水量为2.25 t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少. 请大家翻回到课本看看原来抽样的数据,有没有2.25 这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失了,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差. 提问:那么如何从频率分布直方图中估计中位数呢?分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等.由此可以估计出中位数的值为2.02.思考:2.02这个中位数的估计值,与样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了) 课本显示,大部分居民的月均用水量在中部(2.02 t左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的.思考:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例) 对极端值不敏感有利的例子:考察课本中表21中的数据,如果把最后一个数据错写成22,并不会对样本中位数产生影响.也就是说对极端数据不敏感的方法能够有效地预防错误数据的影响,而在实际应用中,人为操作的失误经常造成错误数据. 对极端值不敏感有弊的例子:某人具有初级计算机专业技术水平,想找一份收入好的工作,这时如果采用各个公司计算机专业技术人员收入的中位数作为选择工作的参考指标就会冒这样的风险:很可能所选择公司的初级计算机专业技术水平人员的收入很低,其原因是中位数对极小的数据不敏感.这里更好的方法是同时用平均工资和中位数来作为参考指标,选择平均工资较高且中位数较大的公司就业.对极端值不敏感的方法,不能反映数据中的极端情况. 同样的,可以从频率分布直方图中估计平均数,上图就显示了居民用水的平均数,它等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.由估计可知,居民的月均用水量的平均值为2.02 t. 显示了居民月均用水量的平均数,它是频率分布直方图的“重心”.由于平均数与每一个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变.这是中位数、众数都不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.从图上可以看出,用水量最多的几个居民对平均数影响较大,这是因为他们的月均用水量与平均数相差太多了. 利用频率分布直方图估计众数、中位数、平均数:估计众数:频率分布直方图面积最大的方条的横轴中点数字.(最高矩形的中点)估计中位数:中位数把频率分布直方图分成左右两边面积相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.总之,众数、中位数、平均数都是对数据中心位置的描述,可以作为总体相应特征的估计.样本众数易计算,但只能表达样本数据中的很少一部分信息,不一定唯一;中位数仅利用了数据中排在中间数据的信息,与数据的排列位置有关;平均数受样本中的每一个数据的影响,绝对值越大的数据,对平均数的影响也越大三者相比,平均数代表了数据更多的信息,描述了数据的平均水平,是一组数据的“重心”.应用示例思路1例1 (1)若m个数的平均数是x,n个数的平均数是y,则这m+n个数的平均数是_;(2)如果两组数x1,x2,xn和y1,y2,yn的样本平均数分别是x和y,那么一组数x1+y1,x2+y2,xn+yn的平均数是_活动:学生思考或交流,教师提示,根据平均数的定义得到结论.解:(1);(2).例2 某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150分),试确定这次考试中,哪个班的语文成绩更好一些甲班:112 86 106 84 100 105 98 102 94 10787 112 94 94 99 90 120 98 95 119108 100 96 115 111 104 95 108 111 105104 107 119 107 93 102 98 112 112 9992 102 93 84 94 94 100 90 84 114乙班:116 95 109 96 106 98 108 99 110 10394 98 105 101 115 104 112 101 113 96108 100 110 98 107 87 108 106 103 97107 106 111 121 97 107 114 122 101 107107 111 114 106 104 104 95 111 111 110分析:我们可用一组数据的平均数衡量这组数据的集中水平,因此,分别求出甲、乙两个班的平均分即可解:用计算器分别求出甲班的平均分为101.1,乙班的平均分为105.4,故这次考试乙班成绩要好于甲班思路2例1 下面是某校学生日睡眠时间抽样频率分布表(单位:h),试估计该校学生的日平均睡眠时间睡眠时间人数频率6,6.5)50056.5,7)170177,7.5)330337.5,8)370378,8.5)60068.5,9)2002合计1001分析:要确定这100名学生的平均睡眠时间,就必须计算其总睡眠时间,由于每组中的个体睡眠时间只是一个范围,可以用各组区间的组中值近似地表示解法一:总睡眠时间约为6.255+6.7517+7.2533+7.7537+8.256+8.752=739(h),故平均睡眠时间约为7.39 h解法二:求组中值与对应频率之积的和6.250.05+6.750.17+7.250.33+7.750.37+8.250.06+8.750.02=7.39(h).答:估计该校学生的日平均睡眠时间约为7.39 h例2 某单位年收入在10 000到15 000、15 000到20 000、20 000到25 000、25 000到30 000、30 000到35 000、35 000到40 000及40 000到50 000元之间的职工所占的比分别为10%,15%,20%,25%,15%,10%和5%,试估计该单位职工的平均年收入分析:上述百分比就是各组的频率解:估计该单位职工的平均年收入为12 50010%+17 50015%+22 50020%+27 50025%+32 50015%+37 50010%+45 0005%=26 125(元).答:估计该单位人均年收入约为26 125元知能训练从甲、乙两个公司各随机抽取50名员工月工资:甲公司:800 800 800 800 800 1 000 1 000 1 000 1 0001 000 1 000 1 000 1 000 1 000 1 0001 2001 2001 2001 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 2001 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 5001 500 1 500 1 500 1 500 1 500 1 500 2 000 2 000 2 0002 000 2 000 2 500 2 500 2 500乙公司:700 700 700 700 700 700 700 700 700700 700 700 700 700 700 1 000 1 000 1 0001 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 0001 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 0001 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 0001 000 1 000 6 000 8 000 10 000试计算这两个公司50名员工月工资平均数、众数、中位数,并估计这两个企业员工平均工资.答案:甲公司:员工月工资平均数1 240,众数1 200,中位数1 200;乙公司:员工月工资平均数1 330,众数1 000,中位数1 000;从总体上看乙公司员工月工资比甲公司少,原因是乙公司有几个收入特高的员工影响了工资平均数.拓展提升 “用数据说话”, 这是我们经常可以听到的一句话.但是,数据有时也会被利用,从而产生误导.例如,一个企业中,绝大多数是一线工人,他们的年收入可能是一万元左右,另有一些经理层次的人,年收入可以达到几十万元.这时,年收入的平均数会比中位数大得多.尽管这时中位数比平均数更合理些,但是这个企业的老板到人力市场去招聘工人时,也许更可能用平均数来回答有关工资待遇方面的提问. 你认为“我们单位的收入水平比别的单位高”这句话应当怎么解释? 这句话的目的是谨防利用人们对统计术语的模糊认识进行误导(蒙骗).使学生能够正确理解在日常生活中像“我们单位的收入水平比别的单位高”这类话的模糊性,这里的“收入水平”是指员工收入数据的某个中心点,即可以是中位数、平均数或众数,不同的解释有不同的含义. 在这里应该注意以下几点:1.样本众数通常用来表示分类变量的中心值,容易计算,但是它只能表达样本数据中的很少一部分信息,通常用于描述分类变量的中心位置.2.中位数不受少数几个极端数据(即排序靠前或排序靠后的数据)的影响,容易计算,它仅利用了数据中排在中间数据的信息.当样本数据质量比较差,即存在一些错误数据(如数据的录入错误、测量错误等)时,应该用抗极端数据强的中位数表示数据的中心值,可以利用计算机模拟样本,向学生展示错误数据对样本中位数的影响程度.3.平均数受样本中的每一个数据的影响,“越离群”的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论