全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
勾股定理复习一知识归纳勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为,斜边为,那么.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法:用拼图的方法验证勾股定理的思路是图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:,化简可证方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积四个直角三角形的面积与小正方形面积的和为大正方形面积为所以方法三:,化简得证.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形.勾股定理的应用已知直角三角形的任意两边长,求第三边在中,则,知道直角三角形一边,可得另外两边之间的数量关系可运用勾股定理解决一些实际问题.勾股定理的逆定理如果三角形三边长,满足,那么这个三角形是直角三角形,其中为斜边勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以,为三边的三角形是直角三角形;若,时,以,为三边的三角形是钝角三角形;若,时,以,为三边的三角形是锐角三角形;定理中,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,满足,那么以,为三边的三角形是直角三角形,但是为斜边勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形.勾股数能够构成直角三角形的三边长的三个正整数称为勾股数,即中,为正整数时,称,为一组勾股数记住常见的勾股数可以提高解题速度,如;等用含字母的代数式表示组勾股数:(为正整数);(为正整数)(,为正整数)勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题在使用勾股定理时,必须把握直角三角形前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决常见图形:【题型一】勾股定理的验证与证明1.如图,每个小正方形的边长是1,图中三个正方形的面积分别是S1、S2、S3,则它们的面积关系是,直角ABC的三边的关系是.2.(2011温州) 我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图11).图12由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图12中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是 .【题型二】以勾股定理为基础的有趣结论1.如图,以直角三角形的三边向形外作等边三角形,探究Sa、Sb和Sc之间的关系.2. 如图,以直角三角形的三边向形外作半圆,探究Sa、Sb和Sc之间的关系.3. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为7cm,则正方形A、B、C、D的面积之和为多少?3.如图,在水平面上依次放置着七个正方形已知斜放置的三个正方形的面积分别是a、b、c,正放置的四个正方形的面积依次是S1、S2、S3 ,则 S1 S2 S3 S4= .【题型三】利用勾股定理求边长和进行论证1.若一个三角形的三边长为3、4、x,则使此三角形是直角三角形的x的值是( )A.5 B. 6 C. D.5或2.要从电杆离地面5m处向地面拉一条长为13m的电缆,则地面电缆固定点与电线杆底部的距离应为( ).A.10m B.11m C.12m D.13m3.现有两根木棒,长度分别为44和55.若要钉成一个三角形木架,其中有一个角为直角,所需最短的木棒长度是( ).A.22 B.33 C.44 D.554将直角三角形的三边扩大相同的倍数后,得到的三角形是( )A 直角三角形 B 锐角三角形 C 钝角三角形 D 不能确定5已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距( )A25海里B. 30海里C. 35海里D. 40海里6. (2010山东临沂)如图,和都是边长为4的等边三角形,点、在同一条直线上,连接,则的长为()A.B.C.D.7. (2010 广西钦州市)如图是一张直角三角形的纸片,两直角边AC6 cm、BC8 cm,现将ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cm C.6 cm D.10 cm8. (2010广西南宁)图中,每个小正方形的边长为1,的三边的大小关系式()A. B. C. D.【题型四】勾股定理在非直角三角形中的应用1.如图,ABC中,AC12,B45,A60.求ABC的面积.2一木工师傅测量了一个等腰三角形的腰、底边和底边上的高的长度,但他却把这三个数据弄混了,请你帮他找出来,应该是( )A. 13,12,12 B12,12,8 C13,10,12 D5,8,4【题型五】利用勾股定理求不规则图形的面积1.如图,BD90,A60,AB4,CD2. 求四边形ABCD的面积.2.如图,每个小正方形的边长都是1,求图中格点四边形ABCD的面积. 【题型六】利用勾股定理求最值1(2009年北恩施)如图,长方体的长为15,宽为10,高为20,点离点的距离为5,一只蚂蚁如果要沿着长方体的表面从点爬到5201510CAB点,需要爬行的最短距离是()ABA B25 C D1.一只蚂蚁从长为4cm、宽为3 cm,高是5 cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是_cm。 2. 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?【题型七】勾股定理逆定理及其应用1.三角形的三边 a、b、c满足关系:(a十b)2=c2 2ab,则这个三角形是( )A直角三角形 B、锐角三角形 C钝角三角形 D条件不足,不能确定2.已知两条线段的长为5cm和12cm,当第三条线段的长为 cm时,这三条线段能组成一个直角三角形.【题型八】勾股定理及逆定理与实际问题1.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要 ( ).A.17m B.18m C.25m D.26m2.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是( )Ah17cm Bh8cm C15cmh16cm D7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 别墅改造施工项目协议
- 城市道路园林建设协议
- 眼镜租赁合同样本
- 市政工程招投标质量保证协议
- 税务局人员聘用协议范本
- 广告传媒公司副总经理招聘启事
- 地震灾区重建泥水施工协议
- 临时办公室租赁协议
- 影像制作服务协议
- 地铁站电梯井道建设协议
- 教科(2024秋)版科学三年级上册2.6 我们来做“热气球”教学设计
- 山西省运城市2024-2025学年高二上学期10月月考英语试题
- 4.3《课间》 (教案)-2024-2025学年一年级上册数学北师大版
- 【班主任工作】2024-2025学年秋季安全主题班会教育周记录
- 2024-2030年街舞培训行业市场发展分析及发展趋势前景预测报告
- 橡胶坝工程施工质量验收评定表及填表说明
- 《2024版CSCO胰腺癌诊疗指南》更新要点 2
- +陕西省渭南市富平县2023-2024学年九年级上学期摸底数学试卷
- 2023年法律职业资格《客观题卷一》真题及答案
- 三年级上《时分秒》教材解读
- 公司培训工作报告6篇
评论
0/150
提交评论