




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3eud教育网 百万教学资源,完全免费,无须注册,天天更新!7.3简单线性规划一、明确复习目标1.理解二元一次不等式表示平面区域 2.了解线性规划的意义,并会简单的应用二建构知识网络1. 二元一次不等式表示的平面区域:在平面直角坐标系中,设有直线(B不为0)及点,则(1)若B0,则点P在直线的上方,此时不等式表示直线的上方的区域;(2)若B0,则点P在直线的下方,此时不等式表示直线的下方的区域;(3) 若B0, 我们都把Ax+By+C0(或0)中y项的系数B化为正值. 2. 线性规划: (1)满足线性约束条件Ax+By+C0(或0)的解(x,y)叫可行解; 所有可行解组成的集合叫可行域;(2)在数学或实际中,常需要求出满足不等式组的解中,使目标函数z=ax+by取得最大值或最小值的解(x,y),(叫最优解),这里约束条件和目标函数都是x,y的一次式,所以我们把这类问题叫线性规划.3.解线性规划问题, 找出约束条件和目标函数是关键,必须认真分析题目,理清头绪,量多时可以列成表格,找出所有约束条件, 列出不等式组,再结合图形求出最优解.4.若实际问题要求最优解必为整数,而我们利用图解法得到的解不是整数解,应作适当的调整,方法是以“与线性目标函数的直线的距离”,在直线附近找出与此直线距离最近的点.三、双基题目练练手1.(2006天津)设变量、满足约束条件,则目标函数的最小值为 ( )ABCD 2. (2006广东) 在约束条件下,当时,目标函数的最大值的变化范围是A B C D 3. (2006湖北9)已知平面区域D由以A(1,3)、B(5,2)、C(3,1)为顶点的三角形内部和边界组成.若在区域D上有无穷多个点(x,y)可使目标函数z=x+my取得最小值,则m= ( )A. -2 B. -1 C. 1 D. 44. 不等式表示的平面区域的面积等于_;5.某厂生产甲产品每千克需用原料A和原料B分别为千克,生产乙产品每千克需用原料A和原料B分别为千克 甲、乙产品每千克可获利润分别为元. 月初一次性购进本月用原料A、B各千克. 要计划本月生产甲、乙两种产品各多少千克才能使月利润总额达到最大. 在这个问题中,设全月生产甲、乙两种产品分别为千克、千克,月利润总额为元,那么,用于求使总利润最大的数学模型中,约束条件为_;6.(2006北京)已知点的坐标满足条件,点为坐标原点,那么的最小值等于_,最大值等于_.7(2005江西)设实数x, y满足 . 8.不等式组表示的平面区域的面积等于_。简答:1-3 BDA;2由得交点为:,(1) 当时可行域是四边形OABC,此时,(2) 当时可行域是OAC,. 4 8; 5; 6 ; 7; 812四、经典例题做一做【例1】设x,y满足约束条件分别求:(1)z=6x+10y,(2)z=2x-y,(3)z=2x-y,(x,y均为整数)的最大值,最小值。解:(1)先作出可行域,如图所示中的区域,且求得A(5,2),B(1,1),C(1,) 作出直线L0:6x+10y=0,再将直线L0平移当L0的平行线过B点时,可使z=6x+10y达到最小值当L0的平行线过A点时,可使z=6x+10y达到最大值所以zmin=16;zmax=50(2)同上,作出直线L0:2x-y=0,再将直线L0平移,当L0的平行线过C点时,可使z=2x-y达到最小值当L0的平行线过A点时,可使z=2x-y达到最大值所以zmin=16;zmax=8(3)同上,作出直线L0:2x-y=0,再将直线L0平移,当L0的平行线过C点时,可使z=2x-y达到最小值当L0的平行线过A点时,可使z=2x-y达到最大值8但由于不是整数,而最优解(x,y)中,x,y必须都是整数所以可行域内的点C(1,)不是最优解当L0的平行线经过可行域内的整点(1,4)时,可使z=2x-y达到最小值所以zmin=-2. 几个结论:(1)、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。(如:上题第一小题中z=6x+10y的最大值可以在线段AC上任一点取到)(2)、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义在y轴上的截距或其相反数。3、线性规划的实际应用【例2】某人上午7时,乘摩托艇以匀速v n mile/h(4v20)从A港出发到距50 n mile的B港去,然后乘汽车以匀速w km/h(30w100)自B港向距300 km的C市驶去应该在同一天下午4至9点到达C市设乘汽车、摩托艇去所需要的时间分别是x h、y h(1)作图表示满足上述条件的x、y范围;(2)如果已知所需的经费p=100+3(5x)+2(8y)(元),那么v、w分别是多少时走得最经济?此时需花费多少元?分析:由p=100+3(5x)+2(8y)可知影响花费的是3x+2y的取值范围391014xO2.5914y解:(1)依题意得v=,w=,4v20,30w1003x10,y 由于乘汽车、摩托艇所需的时间和x+y应在9至14个小时之间,即9x+y14 因此,满足的点(x,y)的存在范围是图中阴影部分(包括边界)(2)p=100+3(5x)+2(8y),3x+2y=131p设131p=k,那么当k最大时,p最小在通过图中的阴影部分区域(包括边界)且斜率为的直线3x+2y=k中,使k值最大的直线必通过点(10,4),即当x=10,y=4时,p最小此时,v=125,w=30,p的最小值为93元点评:线性规划问题首先要根据实际问题列出表达约束条件的不等式然后分析要求量的几何意义【例3】某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:(表中单位:百元)资 金单位产品所需资金月资金供应量空调机洗衣机成 本3020300劳动力:工资510110单位利润68试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?解:设空调机、洗衣机的月供应量分别是x、y台,总利润是P,则P=6x+8y,由题意有30x+20y300,5x+10y110,x0,y0,x、y均为整数由图知直线y=x+P过M(4,9)时,纵截距最大这时P也取最大值Pmax=64+89=96(百元)故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9600元【例4】某矿山车队有4辆载重量为10 t的甲型卡车和7辆载重量为6 t的乙型卡车,有9名驾驶员此车队每天至少要运360 t矿石至冶炼厂已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?分析:弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解解:设每天派出甲型车x辆、乙型车y辆,车队所花成本费为z元,那么74oy5x+4y=30x+y=9xz=252x+160y,作出不等式组所表示的平面区域,即可行域,如图 作出直线l0:252x+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小观察图形,可见当直线252x+160y=t经过点(2,5)时,满足上述要求此时,z=252x+160y取得最小值,即x=2,y=5时,zmin=2522+1605=1304答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低解题回顾:用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点五提炼总结以为师1.二元一次不等式表示的区域,线性规划等;2解线性规划问题的步骤:(1)设:先设变量,列出约束条件和目标函数; (2)画:画出线性约束条件所表示的可行域;(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线; (4)求:通过解方程组求出最优解; (5)答:作出答案。同步练习 7.3简单线性规划 【选择题】1. 下列命题中正确的是A.点(0,0)在区域x+y0内 B.点(0,0)在区域x+y+12x内 D.点(0,1)在区域xy+10内2.(2006安徽)如果实数满足条件 ,那么的最大值为( )A B C D3.(2006浙江)在平面直角坐标系中,不等式组表示的平面区域的面积是 ( )A. B.4 C. D.2【填空题】4.设集合,则A所表示的平面区域的面积是_5.(2006重庆)已知变量,满足约束条件。若目标函数(其中)仅在点处取得最大值,则的取值范围为 。6(2005湖北)某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元.简答.提示:1-3.ABB; 4. ; 5. ; 6. 500【解答题】7.实系数方程f(x)=x2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,求:(1)的值域;(2)(a1)2+(b2)2的值域;(3)a+b3的值域解:由题意知f(0)0,f(1)0,f(2)0b0,a+b+10,a+b+20如图所示 A(3,1)、B(2,0)、C(1,0)又由所要求的量的几何意义知,值域分别为(1)(,1);(2)(8,17);(3)(5,4)8画出以A(3,1)、B(1,1)、C(1,3)为顶点的ABC的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数z=3x2y的最大值和最小值分析:本例含三个问题:画指定区域;写所画区域的代数表达式不等式组;求以所写不等式组为约束条件的给定目标函数的最值解:如图,连结点A、B、C,则直线AB、BC、CA所围成的区域为所求ABC区域直线AB的方程为x+2y1=0,BC及CA的直线方程分别为xy+2=0,2x+y5=0在ABC内取一点P(1,1),分别代入x+2y1,xy+2,2x+y5得x+2y10,xy+20,2x+y50因此所求区域的不等式组为x+2y10,xy+20,2x+y50作平行于直线3x2y=0的直线系3x2y=t(t为参数),即平移直线y=x,观察图形可知:当直线y=xt过A(3,1)时,纵截距t最小此时t最大,tmax=332(1)=11;当直线y=xt经过点B(1,1)时,纵截距t最大,此时t有最小值为tmin= 3(1)21=5因此,函数z=3x2y在约束条件x+2y10,xy+20,2x+y50下的最大值为11,最小值为59某校伙食长期以面粉和大米为主食,面食每100 g含蛋白质6个单位,含淀粉4个单位,售价05元,米食每100 g含蛋白质3个单位,含淀粉7个单位,售价04元,学校要求给学生配制盒饭,每盒盒饭至少有8个单位的蛋白质和10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少?解:设每盒盒饭需要面食x(百克),米食y(百克),所需费用为S=05x+04y,且x、y满足6x+3y8,4x+7y10,x0,y0,由图可知,直线y=x+S过A(,)时,纵截距S最小,即S最小故每盒盒饭为面食百克,米食百克时既科学又费用最少10配制A、B两种药剂,需要甲、乙两种原料,已知配一剂A种药需甲料3 mg,乙料5 mg;配一剂B种药需甲料5 mg,乙料4 mg今有甲料20 mg,乙料25 mg,若A、B两种药至少各配一剂,问共有多少种配制方法?解:设A、B两种药分别配x、y剂(x、yN),则x1,y1,3x+5y20,5x+4y25上述不等式组的解集是以直线x=1,y=1,3x+5y=20及5x+4y=25为边界所围成的区域,这个区域内的整点为(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)、(3,2)、(4,1)所以,在至少各配一剂的情况下,共有8种不同的配制方法【探索题】要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表:块数 规格种类ABC第一种钢板121第二种钢板113每张钢板的面积为:第一种1m2,第二种2 m2,今需要A、B、C三种规格的成品各12、15、27块,问各截这两种钢板多少张,可得所需的三种规格成品,且使所用钢板面积最小?解:设需截第一种钢板x张,第二种钢板y张,所用钢板面积为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版担保换期权协议书模板
- 代写劳务合同样本
- 信息安全保密协议书范文
- 二零二五二手房买卖合同终止
- 离婚登记告知单
- 二零二五金蝶软件运行维护服务合同
- 养殖场承包合同集锦二零二五年
- 金融保密协议二零二五年
- 二零二五新员工入职协议合同书
- 担保方式的变更二零二五年
- 2024-2024年上海市高考英语试题及答案
- 2024扩张性心肌病研究报告
- 卫生监督协管员培训课件
- 2024年社区卫生服务中心工作计划(五篇)
- GB/T 14233.3-2024医用输液、输血、注射器具检验方法第3部分:微生物学试验方法
- IEC 62368-1标准解读-中文
- QC课题提高金刚砂地面施工一次合格率
- 《数学课程标准》义务教育2022年修订版(原版)
- 2023版小学数学课程标准
- 诚信课件下载教学课件
- 工业图像识别中的数据增强技术
评论
0/150
提交评论