2019秋 金版学案 数学选修1-1(人教版)练习:第二章2.2-2.2.2双曲线的简单几何性质 含解析.doc_第1页
2019秋 金版学案 数学选修1-1(人教版)练习:第二章2.2-2.2.2双曲线的简单几何性质 含解析.doc_第2页
2019秋 金版学案 数学选修1-1(人教版)练习:第二章2.2-2.2.2双曲线的简单几何性质 含解析.doc_第3页
2019秋 金版学案 数学选修1-1(人教版)练习:第二章2.2-2.2.2双曲线的简单几何性质 含解析.doc_第4页
2019秋 金版学案 数学选修1-1(人教版)练习:第二章2.2-2.2.2双曲线的简单几何性质 含解析.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学资料范本2019秋 金版学案 数学选修1-1(人教版)练习:第二章2.2-2.2.2双曲线的简单几何性质 含解析编 辑:_时 间:_第二章 圆锥曲线与方程2.2 双曲线2.2.2 双曲线的简单几何性质A级基础巩固一、选择题1双曲线2x2y28的实轴长是()A2 B2 C4 D4解析:双曲线方程可变形为1,所以a24,a2,从而2a4.答案:C2等轴双曲线的一个焦点是F1(6,0),则其标准方程为()A.1 B.1C.1 D.1解析:由已知可得c6,所以 abc3,所以 双曲线的标准方程是1.答案:D3已知双曲线1(b0)的焦点到其渐近线的距离为1,则该双曲线的离心率为()A. B.C. D.解析:由题意及对称性可知焦点(,0)到bxy0的距离为1,即1,所以b1,所以c2,又a,所以双曲线的离心率为.答案:C4已知双曲线C:1(a0,b0)的离心率为,则C的渐近线方程为()Ayx ByxCyx Dyx解析:因为双曲线1的焦点在x轴上,所以双曲线的渐近线方程为yx.又离心率为e ,所以,所以双曲线的渐近线方程为yx.答案:C5(20xx全国卷)已知F是双曲线C:x21的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则APF的面积为()A. B. C. D.解析:方法一:由题可知,双曲线的右焦点为F(2,0),当x2时,代入双曲线C的方程,得41,解得y3,不妨取点P(2,3),因为点A(1,3),所以APx轴,又PFx轴,所以APPF,所以SAPF|PF|AP|31.故选D.方法二:由题可知,双曲线的右焦点为F(2,0),当x2时,代入双曲线C的方程,得41,解得y3,不妨取点P(2,3),因为点A(1,3),所以(1,0),(0,3),所以0,所以APPF,所以SAPF|PF|AP|31.故选D.答案:D二、填空题6已知双曲线1(0n12)的离心率为,则n的值为_解析:因为0n12,所以a2n,b212n.所以c2a2b212.所以e.所以n4.答案:47(20xx江苏卷)在平面直角坐标系xOy中,双曲线y21的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是_解析:由题意得,双曲线的右准线x与两条渐近线yx的交点坐标为,不妨设双曲线的左、右焦点分别为F1,F2,则F1(2,0),F2(2,0),故四边形F1PF2Q的面积是|F1F2|PQ|42.答案:28双曲线1的离心率e(1,2),则k的取值范围是_解析:双曲线方程可变为1,则a24,b2k,c24k,e,又因为e(1,2),则12,解得12k0答案:(12,0)三、解答题9求适合下列条件的双曲线的标准方程:(1)过点(3,),离心率e;(2)中心在原点,焦点F1,F2在坐标轴上,实轴长和虚轴长相等,且过点P(4,)解:(1)若双曲线的焦点在x轴上,设其标准方程为1(a0,b0)因为双曲线过点(3,),则1.又e,故a24b2.由得a21,b2,故所求双曲线的标准方程为x21.若双曲线的焦点在y轴上,设其标准方程为1(a0,b0)同理可得b2,不符合题意综上可知,所求双曲线的标准方程为x21.(2)由2a2b得ab,所以e,所以可设双曲线方程为x2y2(0)因为双曲线过点P(4,),所以1610,即6.所以双曲线方程为x2y26.所以所求双曲线的标准方程为1.10已知双曲线E:1.(1)若m4,求双曲线E的焦点坐标、顶点坐标和渐近线方程;(2)若双曲线E的离心率为e,求实数m的取值范围解:(1)当m4时,双曲线方程化为1,所以a2,b,c3,所以焦点坐标为(3,0),(3,0),顶点坐标为(2,0),(2,0),渐近线方程为yx.(2)因为e21,又e,所以12,解得5m0)右焦点F作一条直线,当直线斜率为2时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围是()A(,5) B(,)C(1,) D(5,5)解析:根据题意,知23,如图因为,所以23,所以5e21,所以e0,b0)的右焦点为F(c,0)(1)若双曲线的一条渐近线方程为yx,且c2,求双曲线的方程;(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过点A作圆的切线,斜率为,求双曲线的离心率解:(1)因为双曲线的渐近线方程为yx,所以ab,所以c2a2b22a24,所以a2b22,所以所求双曲线的方程为1.(2)设点A的坐标为(x0,y0),所以直线AO的斜率满足()1,所以x0y0.由题意,知圆的方程为x2y2c2.因为点A在圆上,所以xyc2.将代入,得3yyc2,又y00,所以y0c,所以x0c,所以点A的坐标为,把点A的坐标代入双曲线方程,得1,即b2c2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论