已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.第三章 习题及答案3-1.假设温度计可用传递函数描述其特性,现在用温度计测量盛在容器内的水温。发现需要时间才能指示出实际水温的98%的数值,试问该温度计指示出实际水温从10%变化到90%所需的时间是多少?解: 2.已知某系统的微分方程为,初始条件,试求:系统的零输入响应yx(t);激励f (t)5(t)时,系统的零状态响应yf (t)和全响应y(t);激励f (t)5 e23t (t)时,系统的零状态响应yf (t)和全响应y(t)。解:(1) 算子方程为:3.已知某系统的微分方程为,当激励=时,系统的全响应。试求零输入响应yx(t)与零状态响应yf (t)、自由响应与强迫响应、暂态响应与稳态响应。解:4. 设系统特征方程为:。试用劳斯-赫尔维茨稳定判据判别该系统的稳定性。解:用劳斯-赫尔维茨稳定判据判别,a4=1,a3=6,a2=12,a1=10,a0=3均大于零,且有所以,此系统是稳定的。5. 试确定下图所示系统的稳定性.解:系统稳定。满足必要条件,故系统稳定。6.已知单位反馈系统的开环传递函数为,试求系统稳定时,参数和的取值关系。解:由Routh表第一列系数大于0得,即7. 设单位反馈系统的开环传递函数为,要求闭环特征根的实部均小于-1,求K值应取的范围。解:系统特征方程为 要使系统特征根实部小于,可以把原虚轴向左平移一个单位,令,即 ,代入原特征方程并整理得 运用劳斯判据,最后得8. 设系统的闭环传递函数为 ,试求最大超调量=9.6%、峰值时间tp=0.2秒时的闭环传递函数的参数和n的值。解:=9.6% =0.6 tp=0.2 n=19.6rad/s 9.设单位负反馈系统的开环传递函数为 求(1)系统的阻尼比和无阻尼自然频率n;(2)系统的峰值时间tp、超调量、 调整时间tS(=0.02);解:系统闭环传递函数 与标准形式对比,可知 , 故 , 又 10. 一阶系统结构图如下图所示。要求系统闭环增益,调节时间s,试确定参数的值。解 由结构图写出闭环系统传递函数令闭环增益, 得:令调节时间,得:。11.设某高阶系统可用下列一阶微分方程:近似描述,其中,。试证系统的动态性能指标为: ; ; 解 设单位阶跃输入当初始条件为0时有:1) 当 时 ; 2) 求(即从到所需时间) 当 ; 当 ; 则 3) 求 12. 已知系统的特征方程,试判别系统的稳定性,并确定在右半s平面根的个数及纯虚根。(1)(2)(3)(4)解(1)=0 Routh: S5 1 2 11 S4 2 4 10 S3 S2 10 S S0 10第一列元素变号两次,有2个正根。(2)=0 Routh: S5 1 12 32 S4 3 24 48 S3 0 S2 48 S 0 辅助方程 , S 24 辅助方程求导: S0 48系统没有正根。对辅助方程求解,得到系统一对虚根 。(3)Routh: S5 1 0 -1 S4 2 0 -2 辅助方程 S3 8 0 辅助方程求导 S2 -2 S S0 -2第一列元素变号一次,有1个正根;由辅助方程可解出: (4)Routh: S5 1 24 -25 S4 2 48 -50 辅助方程 S3 8 96 辅助方程求导 S2 24 -50 S 338/3 S0 -50第一列元素变号一次,有1个正根;由辅助方程可解出: 13.已知单位反馈控制系统开环传递函数如下,试分别求出当输入信号为、和时系统的稳态误差。 解: 经判断系统稳定 经判断:系统不稳定。14.已知单位负反馈系统的开环传递函数如下: 求:(1) 试确定系统的型次v和开环增益K; (2)试求输入为时,系统的稳态误差。解:(1)将传递函数化成标准形式可见,v1,这是一个I型系统 开环增益K50;(2)讨论输入信号,即A1,B3误差15. 已知单位负反馈系统的开环传递函数如下: 求:(1) 试确定系统的型次v和开环增益K; (2)试求输入为时,系统的稳态误差。解:(1)将传递函数化成标准形式 可见,v2,这是一个II型系统 开环增益K100; (2)讨论输入信号,即A5,B2, C=4误差16.在许多化学过程中,反应槽内的温度要保持恒定, 图(a)和(b)分别为开环和闭环温度控制系统结构图,两种系统正常的值为1。 若,两种系统从响应开始达到稳态温度值的63.2各需多长时间?当有阶跃扰动时,求扰动对两种系统的温度的影响。解 (1)对(a)系统: , 时间常数 (a)系统达到稳态温度值的63.2%需要10个单位时间;对(a)系统:, 时间常数 (b)系统达到稳态温度值的63.2%需要0.099个单位时间。(2)对(a)系统: 时,该扰动影响将一直保持。对(b)系统: 时,最终扰动影响为。17.单位反馈系统的开环传递函数,求单位阶跃响应和调节时间 。解:依题,系统闭环传递函数 , 。18. 设下图(a)所示系统的单位阶跃响应如图(b)所示。试确定系统参数和。解:由系统阶跃响应曲线有 系统闭环传递函数为 (1)由 联立求解得 由式(1)另外 19. 设角速度指示随动系统结构图如下图所示。若要求系统单位阶跃响应无超调,且调节时间尽可能短,问开环增益应取何值,调节时间是多少?解 依题意应取 ,这时可设闭环极点为。写出系统闭环传递函数 闭环特征多项式 比较系数有 联立求解得 因此有 20.单位反馈系统的开环传递函数为:。试在满足 的条件下,确定使系统稳定的和的取值范围,并以和为坐标画出使系统稳定的参数区域图。解 特征方程为: Routh : S3 S2 S S0 综合所得条件,当 时,使系统稳定的参数取值范围如图中阴影部所示。21.温度计的传递函数为,用其测量容器内的水温,1min才能显示出该温度的98%的数值。若加热容器使水温按10C/min的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数由一阶系统阶跃响应特性可知:,因此有 ,得出 。视温度计为单位反馈系统,则开环传递函数为 用静态误差系数法,当 时,。解法二 依题意,系统误差定义为 ,应有 22.系统结构图如图所示。试求局部反馈加入前、后系统的静态位置误差系数、静态速度误差系数和静态加速度误差系数。解 局部反馈加入前,系统开环传递函数为 局部反馈加入后,系统开环传递函数为 23.已知单位反馈系统的开环传递函数为:。试分别求出当输入信号和时系统的稳态误差。解 由静态误差系数法时, 时, 时, 24.系统结构图如图3-59所示,要使系统对而言是II型的,试确定参数和的值。解 依题意应有: 联立求解得 此时系统开环传递函数为 考虑系统的稳定性,系统特征方程为当 ,时,系统稳定。25.大型天线伺服系统结构图如图所示,其中=0.707,=15,=0.15s。当干扰,输入时,为保证系统的稳态误差小于0.01,试确定的取值;当系统开环工作(=0),且输入时,确定由干扰引起的系统响应稳态值。解 (1)干扰作用下系统的误差传递函数为 时, 令 得: (2)此时有 26.已知控制系统结构图如图所示,试求:按不加虚线所画的顺馈控制时,系统在干扰作用下的传递函数;当干扰时,系统的稳态输出;若加入虚线所画的顺馈控制时,系统在干扰作用下的传递函数,并求对输出稳态值影响最小的适合值。解 (1)无顺馈时,系统误差传递函数为 (2)(3)有顺馈时,系统误差传递函数为 令 =0得 27.试求图中所示系统总的稳态误差。解:(a). (b). 28.设复合校正控制系统结构图如图3-65所示,其中N(s)为可量测扰动。若要求系统输出C(s)完全不受N(s)的影响,且跟踪阶跃指令的稳态误差为零,试确定前馈补偿装置Gc1(s)和串联校正装置Gc2(s)。解 (1)求。令得: 。(2)求。令当作用时,令 明显地,取 可以达到目的。29.复合控制系统结构图如图所示,图中,均为大于零的常数。确定当闭环系统稳定时,参数,应满足的条件;当输入时,选择校正装置,使得系统无稳态误差。解 (1)系统误差传递函数 列劳斯表 因 、 均大于零,所以只要 即可满足稳定条件。(2)令 可得 30.系统结构图如图所示。为确保系统稳定,如何取值?为使系统特征根全部位于平面的左侧,应取何值?若时,要求系统稳态误差,应取何值? 解 (1) Routh: 系统稳定范围: (2)在中做平移变换: Routh: 满足要求的范围是: (3)由静态误差系数法当 时,令 得 。综合考虑稳定性与稳态误差要求可得: 31.判断下列系统的能控性。1) 2) 解:1) 由于该系统控制矩阵,系统矩阵,所以从而系统的能控性矩阵为显然有满足能控性的充要条件,所以该系统能控。2)由于该系统控制矩阵为系统矩阵为则有,从而系统的能控性矩阵为有满足能控性的充要条件,所以该系统能控。32.判断下列系统的能观测性。解系统的观测矩阵,系统矩阵,得系统能观性矩阵为可知满足能观性的充要条件,所以该系统是能观测的。系统的观测矩阵,系统矩阵,于是系统能观性矩阵为易知满足能观性的充要条件,所以该系统是能观测的。33.试确定当与为何值时下列系统不能控,为何值时不能观测。解 系统的能控性矩阵为其行列式为根据判定能控性的定理,若系统能控,则系统能控性矩阵的秩为2,亦即,可知或。系统能观测性矩阵为其行列式为根据判定能观性的定理,若系统能观,则系统能观性矩阵的秩为2,亦即,可知或。 34.将下列状态方程化为能控标准形解 该状态方程的能控性矩阵为知它是非奇异的。求得逆矩阵有,由得同理,由得从而得到由此可得,所以,此即为该状态方程的能控标准形。 35.将下列状态方程和输出方程化为能观标准形。解 给定系统的能观性矩阵为知它是非奇异的。求得逆矩阵有,由此可得,根据求变换矩阵公式有,代入系统的状态表达式。分别得所以该状态方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产品质量承诺书模板
- 中福在线服务员总结
- 中秋节主题演讲
- 为国争光课件教学课件
- 影响工期的因素分析及应对措施
- 元旦模板课件教学课件
- 菊花病害课件教学课件
- 安全的课件教学课件
- 四年级数学(四则混合运算带括号)计算题专项练习与答案汇编
- 自愿出资入股协议书(2篇)
- 安全驾驶培训
- GB/T 30595-2024建筑保温用挤塑聚苯板(XPS)系统材料
- 山东济南天桥区2024-2025学年八年级物理第一学期期中考试试题(含答案)
- 《中华人民共和国突发事件应对法》知识培训
- 托班语言夏天课程设计
- 黑龙江省哈尔滨市第一二四中学2024-2025学年七年级上学期期中考试数学试卷(含答案)
- 【招商银行】跨境电商行业深度报告:中国跨境电商产业升级“四小龙”吹响出海集结号
- 2024年软件资格考试系统集成项目管理工程师(中级)(基础知识、应用技术)合卷试卷及解答参考
- 《秋游》秋游教学课件
- 人教部编版六年级语文上册郝晓怡《盼》名师教学课件
- 2023年5月软考中级系统集成项目管理工程师下午真题
评论
0/150
提交评论