第四讲 函数的奇偶性知识点及经典例题.doc_第1页
第四讲 函数的奇偶性知识点及经典例题.doc_第2页
第四讲 函数的奇偶性知识点及经典例题.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学 集合与函数 第四讲 奇偶性知识点及经典例题一、函数奇偶性的概念:设函数的定义域为,如果对内的任意一个,都有,且,则这个函数叫奇函数。(如果已知函数是奇函数,当函数的定义域中有0时,我们可以得出)设函数的定义域为,如果对内的任意一个,都有,若,则这个函数叫偶函数。 从定义我们可以看出,讨论一个函数的奇、偶性应先对函数的定义域进行判断,看其定义域是否关于原点对称。也就是说当在其定义域内时,也应在其定义域内有意义。 图像特征如果一个函数是奇函数这个函数的图象关于坐标原点对称。如果一个函数是偶函数这个函数的图象关于轴对称。复合函数的奇偶性:同偶异奇 对概念的理解:(a)必要条件:定义域关于原点成中心对称。(b)与的关系: 当或或时为偶函数; 当或或时为奇函数。二、函数的奇偶性与图象间的关系: 偶函数的图象关于轴成轴对称,反之也成立; 奇函数的图象关于原点成中心对称,反之也成立。三、关于函数奇偶性的几个结论:若是奇函数且在处有意义,则偶函数 偶函数=偶函数;奇函数奇函数=奇函数; 偶函数偶函数=偶函数;奇函数奇函数=偶函数; 偶函数奇函数=奇函数 奇函数在对称的单调区间内有相同的单调性, 偶函数在对称的单调区间内具有相反的单调性.(二)、关于函数奇偶性的运用1利用奇偶性求函数式或函数值1设函数为定义域为R上奇函数,又当时,试求的解析式。2.已知是奇函数,当时,求当时,得解析式。3.设函数是定义域R上的奇函数,当时,求的值。5.已知函数,若,求的值。6若函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论