已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
外文翻译 专 业 机械设计制造及其自动化 学 生 姓 名 陈 曦 班 级 BD 机制 031 学 号 0320110129 指 导 教 师 刘 道 标 . 1 模具数控加工计算机辅助刀具选择研究 耿铁 段修涛 译 引言 数 控加工中包括刀具轨迹的产生和刀具选择两个关键问题。前一问题在过去的20 年里得到了广泛而深入地研究, 发展的许多算法已在商用 CAD/ CAM 系统中得到应用。目前大多数 CAM 系统能够在用户输入相关参数后自动产生刀具轨迹。比较而言,对以质量、效率为优化目标的刀具选择问题的研究还远未成熟,当前还没有商用CAM 系统能够提供刀具优选的决策支持工具,因而难以实现 CAD/ CAM 的自动有机集成。刀具选择通常包括刀具类型和刀具尺寸。一般来说,适合一个加工对象的刀具通常有多种,一种刀具又可完成不同的加工任务,所以仅考 虑满足基本加工要求的刀具选择是较容易的,尤其对孔、槽等典型几何特征。但实际上,刀具选择通常和一定的优化目标相联系,如最大切削效率、最少加工时间、最低加工成本、最长使用寿命等,因此刀具选择又是一个复杂的优化问题。比如模具型腔类零件,由于几何形状复杂 (通常包含自由曲面及岛 ) ,影响刀具选择的几何约束在 CAD 模型中不能显式表示,需要设计相应的算法进行提取,因而选择合适的刀具规格及其刀具组合,以提高数控加工的效率与质量并非易事。 模具型腔一般用数控铣的加工方法,通常包括粗加工、半精加工、精加工等工序。粗加工的原 则就是尽最大可能高效率地去除多余的金属,因而希望选择大尺寸的刀具,但刀具尺寸过大,可能导致未加工体积的增多 ;半精加工的任务主要是去除粗加工遗留下来的台阶 ;精加工则主要保证零件的尺寸及表面质量。考虑到目前完全由计算机进行自动选刀还存在一定困难,因而在我们开发的计算机辅助刀具选择(Computer Aided Tool Selection , CATS)系统中,立足于给用户提供一个辅助决策工具,即粗加工、半精加工、精加工等,真正的决策权仍留给用户,以充分发挥计算机和人的优势。 1 系统基本结构 CATS 系统的 输入为 CAD 模型,输出为刀具类型、刀具规格、铣削深度、进给量、主轴转速 (切削速度 ) 和加工时间等六个参数 (如图 1) ,包括刀具类型选择辅助决策 2 工具、粗加工刀具选择辅助决策工具、半精加工刀具选择辅助决策工具及精加工刀具选择辅助决策工具等。 图 1 计算机辅助刀具选择系统的输入与输出 鉴于粗加工在型腔加工中的重要地位 (通常为精加工时间的 5 10 倍 ) ,粗加工时系统具有刀具自动优化组合的功能,以提高整体加工的效率。除了上述决策工具外,系统还具有查看刀具详细规范、根据刀具类型和尺寸推荐加工参数及评估加工时间等功能,最后生成总的刀具选择结果报表 (如图 2) 。系统所有的刀具数据及知识均由后台数据库做支持。 图 2 计算机辅助刀具选择 系统的基本功能与模块 2 关键技术及算法 1) 刀具类型选择 根据模具型腔数控加工实践,型腔铣加工的刀具一般分为平头铣刀、圆角铣刀及球头铣刀三种。设刀具直径为 D,圆角半径为 r ,当 r=0 时为平头铣刀, 0R 刀具又可分为整体式和镶片式。对于镶片式,关键是选取刀片的材质,刀片材质的选择取决于三个要素:被加工工件的材料、机床夹具的稳定性以及刀具的悬臂状态。系统将被 3 加工工件的材料分为钢、不锈钢、铸铁、有色金属、难切削材料和硬材料等六组。机床夹具的稳定性分为很好、好、不足三个等级。刀具悬臂分为短悬臂和长悬臂两种,系统 根据具体情况自动推理出刀片材质,决策知识来源于 WALTER 刀具手册,系统由用户首先交互选择刀具类型。对镶片式刀具,基于规则自动推理出合适的刀片材质。例如,如果被加工工件的材料为 “ 钢 ” ,机床夹具的稳定性为很好,刀具悬臂为短悬臂,则刀片材质应为 WAP25 。 2) 粗加工刀具组合优化 型腔粗加工的目的就是最大化地去除多余的金属,通常使用平头铣刀,采取层切的方法。因此, 3D模具型腔的粗加工过程,实际上就是对一系列 2.5D 模具型腔的加工。刀具优化的目的就是要寻找一组刀具组合,使其能够以最高的效率切除最多的金属。刀具组 合优化的基本方法如下: a.以一定的步长做一组垂直于进刀方向的搜索平面与型腔实体相交,形成搜索层。 b. 求出截交轮廓。 c. 计算内外环之间或岛与岛之间的关键距离,即影响刀具选择的几何约束,算法流程如图 3 所示。 图 3 求关键距离算法流程 d. 根据合并原则 (相邻关键距离相差小于给定阈值 ) 对搜索层进行合 并,确定加工平面和可行刀具集,形成加工层。 e. 确定每一加工层使用的刀具,即型腔加工的刀具组合。 f. 根据刀具推荐的加工参数 (切削速度、铣削深度和进给速度 ) ,计算材料去除 . g. 根据加工层实际切除的体积,计算每一加工层的加工时间。 h. 计算型腔总的加工时间和残余体积。 i.对该组刀具组合的总体加工效率进行评估。 4 j. 重复 a i,直至求出最优的刀具组合。如以时间为目标,即要求以整个型腔的加工时间 t 最短来优化刀具组合。基于上述方法,可建立如下形式化的优化模型。 MRRi=(dicij)(Nfz)( 切割截面积乘进给率 ) 式中: n 型腔加工层数量 ; m 每一加工层刀具的铣削次数 ; l 每一加工层中的搜索层数量 ; q 每一加工层可行的刀具数量 ; h 型腔深度 ; cij i 加工层第 j 次铣削深度 ; aj 第 j 切割层底面积 ; vi i 加工层的铣削体积 ;MRRi i 加工层的材料去除率 ; di i 加工层的刀具直径 ; dip i 加工层可行刀具集合 ; rik i 加工层 k 搜索层的关 键距离 ;e1 控制搜索层合并的常数 ;e2 控制残余体积的常数 ;V 型腔体积 ;DV 残余体积 ; N 主轴转速 ; f 刀具每齿进给量 ; z 刀具齿数。考虑到不同的搜索平面步长会产生不同的加工层,从而导致不同的加工时间和残余体积,因此有时尽管总的加工时间较短,但残余体积可能较多。由此可见,单独以加工时间为目标进行优化有时并不一定科学。为此,提出了效率系数的概念,综合考虑了加工时间和残余体积的因素,加工时间越短,残余体积越少,则效率系数就越高。令: 上式中前一项反映了加工单位体积的时间系数,其中 k =DV/V 为残余体积百分数。这样,效率系数可定义为 q = 1/ Q 。 3) 半精加工刀具选择 5 半精加工的主要目的是去除粗加工残留下的台阶状轮廓。为完全去除台阶,铣削深度必须大于每一台阶到零件表面的距离 x。其算法步骤如下: 步骤 1 由零件实体模型获得两个相邻截面的表面积以及相应的轮廓长度 ; 步骤 2 计算平均轮廓 长度 ; 步骤 3 计算台阶宽度 ; 步骤 4 计算台阶拐角到零件表面的法向距离 x ; 步骤 5 重复步骤 1步骤 4 ,决定每一台阶的铣削深度 ; 步骤 6 计算刀具直径 D, 按经验 D=x/0.6 或根据刀具手册推荐 ; 步骤 7 选择铣削深度大于 x 的最小刀具。 4) 精加工刀具选择 5) 精加工刀具选择的基本原则是:刀具半径尺寸 R 小于零件表面最小的曲率半径 一般取 R=(0.8 0.9)r。其算法步骤如下: 步骤 1 从零件实体模型计算最小曲率半径 ; 步骤 2 从刀具库中检索出刀具半径小于计算所得的曲率半径的所有刀具 ; 步骤 3 选出满足上述要求的最大刀具 ; 步骤 4 如果所有刀具大于最小的曲率半径,选择最小的作为推荐刀具。 3 系统实施及算例 CATS 系统在 UG/OPEN API 环境下应用 C语言开发而成。后台数据库为 Oracle 8i ,利用 ODBC 编程实现 UG 与数据库之间的通讯。所有的刀具数据及知识来自德国WALTER 公司的硬质合金刀具综合样本。图 4为一包含岛及雕塑曲面的模具型腔, 根据上文提出的粗加工刀具组合的优化方法,该模具型腔粗加工刀具的优化组合为 20,12, 8, 5。计算中,工件材料选定为中碳钢,切削速度推荐值 为 100m/min ,铣削深度为刀具直径的 1/ 2 ,进给量根据刀具推荐值由程序自动修正计算。同时,假定刀具库中现有平头铣刀刀具规格为 f3, f4, f5, f6, f8, f10, f12, f16, f20。同样,根据半精加工和精加工的刀具选择算法,得到的球头铣刀的刀具直径分别为 4和 3。 6 图 4 包含岛及雕塑曲面的模具型腔 4 小结与讨论 模具型腔加工的工艺规划通常需要很高的技术与经验,准备 NC 数据的时间几乎和加工时间一样多。因此,自动产生型腔加工的工艺计划及 NC 加工指令的需求就显得愈加迫切 。 本文系统研究了模具型腔工艺规划中的刀具选择问题,提出了模具型腔粗加工、半精加工、精加工刀具选择的原则和方法,构造了相应的实现算法,并在UG/OPEN API 环境下进行了初步编程实现,开发了 CATS 原型系统。在刀具类型和规格确定的基础上,系统还可根据刀具手册推荐加工参数 (切削速度、铣削深度、进给量等 ) ,对相应的加工时间进行评估。其最终目 的是真正实现 CAD/CAM 的集成,继而通过后处理产生数控加工指令。目前 CATS系统的界面还是独立于 UG的 CAM界面, CATS的策结果还需要用户重新输入到 CAM。 需要指出的是,要提高模具型腔的总体加工效率,需要从粗加工、半精加工、精加工的整体上考虑,进行多目标组合优化,这将是我们下一步要进行的工作 。 7 Mould&Die NC computer-aided Tool of Selection Geng Tie State Key Lab.of Mould&Die Technology,HuaZhong University of Science and Technology Wuhan 430074 ,China Introduction NC machining tool path generation and tool selection, including the two key issues. Before a problem in the past 20 years has been wide-ranging and in-depth study, Many algorithms for the development of CAD CAM system has been applied in the business. Most CAM systems to the user input parameters with automatic tool path. Comparatively speaking, the quality, efficiency and optimization tool of choice is far from mature. Currently no commercial CAM system optimization tool can provide decision support tools. it is difficult to achieve automatic CAD CAM integrated. Tools typically include tools and tool type size. In general, usually for a processing tool targeting a variety of different processing tasks as well as the completion of a tool. Therefore, considering only meet the basic requirements of the tool selection process is relatively easy, particularly for the holes, ducts, etc. typical geometric features. But in reality, and we usually choose the optimal tool goals, such as the most efficient cutting, processing time at least, the lowest manufacturing cost, and the longest life expectancy, and so on tool selection is a complex optimization problems. For example, die parts, complex geometric shapes (usually free surface and Island) Tool choices affect the geometric constraints in CAD model can not explicit that it is necessary to design appropriate extraction algorithm, choose the appropriate tools and tool specifications portfolio to improve the efficiency and quality of NC is not an easy task. NC general cavity with the processing methods, including extensive and usually, semi-finishing and finishing processes. Snag is the principle of maximum extent possible the efficient removal of excess metal and therefore 8 wish to opt for large size of the tool, But cutter size is too large, might not lead to an increase in processing volume; the main task is getting extensive and semi-finished stage left; finished the main components of the size and surface quality assurance. Taking into account the current election entirely by the computer automatically knife there are still certain difficulties, therefore, in our development of the computer-aided tool selection (Computer Aided Tool Selection, CATS) system, based on the users to provide a decision-support tool, roughing, semi-finishing and finishing. the real decision-making power is left to users, and to bring into full play the advantages of computer. 1.System structure. CATS system for CAD model input, output types of tools, tool specifications Milling depth, feed, Spindle Speed (Speed) and the processing time of six parameters (Figure 1). Tool types of options, including decision-support tool, tool selection decision-support tool for roughing. tool selection decision-support tool for semi-finishing and finishing tool selection decision-making tools. Figure 1 computer-aided tool selection of input and output Given extensive and important position in the cavity (usually 5-10 times finishing time). snag when the system is automatically optimized combination of functional tool to enhance overall processing efficiency. In addition to 9 the above decision-making tools, the system also has a detailed standardized tools to detect, According to the recommendation of processing parameters and the size and type of tool to assess the function of processing time. Tool choice of the final total returns generated (Figure 2). Tool System data and knowledge are all in support of the background database. Figure 2 CAD tool selection and the basic function modules 2 key technology and algorithms 1) Tools for choice According die NC practice, the tool generally consists of Milling Cutter peace. Fillet cutter and the cutter ball three. Based tool diameter D, the radius r, r = 0 when the crew cutter. 0R tools can be divided into the overall style and framed chip. Tipped for the ceremony, the key is to select material blades, blade materials are determined by three factors : the workpiece material, Machine tool fixture and the stability of the cantilever. Workpiece material will be processed into steel, stainless steel, cast iron, nonferrous metals, materials and other hard-to-cut materials and hardware six. Stability jig into the well, less than three grades. Cantilever Tool cantilevered into short and long cantilever two, the system automatically inducted blade material under specific circumstances. WALTER Tool knowledge comes from the decision-making manuals, system users to choose the first interactive tool types. Tipped Tools of the rule-based Automated Reasoning blades suitable material. For example, if the workpiece material as steel, the stability of the fixture good tool for short cantilever cantilever. Blade material will be WAP25. 2) Portfolio Optimization Tool snag The objective is to maximize the cavity snag in the removal of excess metal, used Ping Cutter and take all the layers. Therefore, the 3D die roughing process is actually a series of 2.5D die for processing. Optimization Tool 10 Tool Groups goal is to find a combination that will enable it to the highest removal efficiency of most metals. The basic approach is as follows : Portfolio Optimization Tool A. To do a certain step in the direction perpendicular to the feed cavity search plane and entities intersect, the formation search layer. B. Deadline for submission of outline obtained. C. Calculation link between or outside of critical distance between the islands, the choice of tools to influence the geometric constraint, the algorithm shown in figure 3. Figure 3 key demand from the algorithm. D. Under this principle (the distance between adjacent key difference is less than a given threshold) level of the search for a merger Plane processing and identify viable tool sets, forming layers. E. Each layer processing tool used to determine that the combination of the tool cavity. F. According to the recommended processing tool parameters (cutting speed, feed rate and depth of milling), material removal rate calculation. G. According to the actual removal of the layer processing volume, the processing time is calculated for each layer processing. H. Calculate the total processing time and residual volume cavity. I. The overall composition of this group processing efficiency assessment tool. J. Ai repeated until the optimal combination of the tool. If time goal that the processing time t required for the entire cavity tool to optimize the 11 combination of the shortest. Based on the above methodology, we can establish the following formal optimization model. MRRi=(dicij)(Nfz) (X cross -sectional area of cutting feed rate) Where : n-layer processing cavity volume; M-layer processing each of the milling cutter number; l-processing layer in the search each layer volume; q-layer processing every tool possible number; h-cavity depth; cij -i time processing layer j Milling depth; aj - j cutting area of the base layer; vi -i processing volume ;MRRi -i milling layer, layer of material removal; di -i layer processing tool diameter; -i processing layer dip viable tool set; rik -i processing layer k ;e1 search of the key distance-control layer with a constant search; e2 - residual volume control constants; V-cavity volume ;DV - residual volume; N-spindle speed; f-cutter feed per tooth; z-cutter teeth. Plane taking into account the different steps in the search process will produce different levels, resulting in the processing time and residual volume, So sometimes, even though total processing time shorter, but more likely to residual volume. This shows that the target of a separate optimization of processing time are not necessarily science. Therefore, the coefficient of efficiency of the concept, considering the processing time and the residual volume, the processing time is shorter. less residual volume, the higher the efficiency coefficient. Possession : 12 On a middle-processing unit volume reflects the time factor, k =DV/V percentage of residual volume. Thus, the efficiency coefficient defined as q = 1/ Q. 3) Semi-finished Tool Selection The main purpose is to remove semi-finished roughing the residue level contour shape. For the complete removal of height, depth milling the surface must be greater than the distance between each level of x components. Algorithm steps are as follows : Step 1 model will have two parts from the adjacent section and the corresponding surface contour length; Step 2 calculation of the average length profile; Step 3 calculating height width; Step 4 Calculation of the corner to level the surface of the parts to distance x law; Step 5 Repeat steps from 1 to 4 steps, each step of the decision Milling depth; Step 6 curve of the diameter D, D=x/0.6 Tools manual or recommended by experience; Step 7 x greater than the minimum depth of choice milling cutter. 4) finished Tool Selection The basic principle is : finishing tool selection tool radius R size smaller than the smallest curvature radius r surface parts. General admission R = (0.80.9) r. The following steps : Step 1 algorithm model from the smallest radius of curvature parts entities; Step 2 retrieved from the database tool cutter radius less than the radius of curvature calculation for all tool; Step 3 select the best tools to meet these requirements; Step 4 : If all the tools than the smallest radius of curvature. Minimum recommended as a tool of choice. 13 3 implementation of the system and examples CATS system in the C language environment UG/OPEN API was developed. Background for the Oracle 8i database using ODBC programming and database communications between UG. All the data and knowledge from Germany WALTER Tool Company Carbide Tool integrated samples.Figure 4 contains a sculptured surface of the mold cavity and the island, according to the snag in the portfolio optimization tool, The die-extensive portfolio optimization tool for 20,12,8,5. Calculation, the workpiece material selected for carbon steel, cutting speed 100m/min recommended value. Milling depth of two sixth tool diameter, feed rate according to the recommended values from the process tool that automatically calculated. Mean
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能防盗窗系统升级改造施工合同2篇
- 二零二四商标权转让与品牌推广一体化合同
- 2025年新型园林景观设计施工一体化合同模板4篇
- 2025年度路面摊铺工程与绿色建筑认证合同4篇
- 基于人工智能的2025年度智慧交通管理系统合同3篇
- 2025年度二零二五旅行社与旅游纪念品开发合作合同4篇
- 个人企业专项咨询辅导服务协议版
- 2025年度环保材料买卖合同中产品环保性能与质量检测标准4篇
- 二零二五版出租厂房安全生产责任保险合作协议样本3篇
- 二零二五测绘项目质量管理体系合同3篇
- 盖洛普Q12解读和实施完整版
- 2023年Web前端技术试题
- GB/T 20840.8-2007互感器第8部分:电子式电流互感器
- GB/T 14864-2013实心聚乙烯绝缘柔软射频电缆
- 品牌策划与推广-项目5-品牌推广课件
- 信息学奥赛-计算机基础知识(完整版)资料
- 发烟硫酸(CAS:8014-95-7)理化性质及危险特性表
- 数字信号处理(课件)
- 公路自然灾害防治对策课件
- 耳鸣中医临床路径
- 安徽身份证号码前6位
评论
0/150
提交评论