




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.已知椭圆M:+=1(ab0)的离心率为,焦距为2斜率为k的直线l与椭圆M有两个不同的交点A,B()求椭圆M的方程;()若k=1,求|AB|的最大值;2.设椭圆E的方程为,点O为坐标原点,点A的坐标为,点B的坐标为,点M在线段AB上,满足,直线OM的斜率为.(I)求E的离心率e;(II)设点C的坐标为,N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求 E的方程.3. 已知椭圆的左焦点为,离心率为,点M在椭圆上且位于第一象限,直线被圆截得的线段的长为c,.(I)求直线的斜率;(II)求椭圆的方程;4 .已知椭圆()的半焦距为,原点到经过两点,的直线的距离为(I)求椭圆的离心率;(II)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程5已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m0)(1)证明:k;(2)设F为C的右焦点,P为C上一点,且+=,证明:2|=|+|答案1. 【解答】解:()由题意可知:2c=2,则c=,椭圆的离心率e=,则a=,b2=a2c2=1,椭圆的标准方程:;()设直线AB的方程为:y=x+m,A(x1,y1),B(x2,y2),联立,整理得:4x2+6mx+3m23=0,=(6m)2443(m21)0,整理得:m24,x1+x2=,x1x2=,|AB|=,当m=0时,|AB|取最大值,最大值为;2. 【答案】(I);(II).3. 【答案】(I) ; (II) ;【解析】(I) 由已知有,又由,可得,设直线的斜率为,则直线的方程为,由已知有,解得.(II)由(I)得椭圆方程为,直线的方程为,两个方程联立,消去,整理得,解得或,因为点在第一象限,可得的坐标为,由,解得,所以椭圆方程为4.【答案】(I);(II)试题解析:(I)过点,的直线方程为, 则原点到直线的距离,由,得,解得离心率.(II)解法一:由(I)知,椭圆的方程为. (1)依题意,圆心是线段的中点,且.易知,不与轴垂直,设其直线方程为,代入(1)得设则由,得解得.从而.于是.由,得,解得.故椭圆的方程为.解法二:由(I)知,椭圆的方程为. (2)5. 【解答】解:(1)设A(x1,y1),B(x2,y2),线段AB的中点为M(1,m),x1+x2=2,y1+y2=2m将A,B代入椭圆C:+=1中,可得,两式相减可得,3(x1+x2)(x1x2)+4(y1+y2)(y1y2)=0,即6(x1x2)+8m(y1y2)=0,k=点M(1,m)在椭圆内,即,解得0m(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),可得x1+x2=2+=,F(1,0),x11+x21+x31=0,x3=1由椭圆的焦半径公式得则|
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《安全知识与我同行》课件
- 2025电力维护工程师劳动合同
- 温州职业技术学院《中西医结合眼科学》2023-2024学年第一学期期末试卷
- 云南艺术学院《商业计划书写作实践》2023-2024学年第二学期期末试卷
- 2025至2031年中国智能空调节电器行业投资前景及策略咨询研究报告
- 四川中医药高等专科学校《公共事业管理概论》2023-2024学年第二学期期末试卷
- 2025至2031年中国当归油行业投资前景及策略咨询研究报告
- 武清钢围堰防腐施工方案
- 《中学探究型课程》课件
- 2025至2031年中国MP3转接头行业投资前景及策略咨询研究报告
- 2024-2025学年小学信息技术(信息科技)五年级上册人教版教学设计合集
- 肺栓塞指南解读2
- 美育第四版美即生活课件《形式美的欣赏》
- 专题08 七年级下册《卖油翁》课内外阅读分层练(含答案)-2024年中考语文复习之教考衔接文言文专题练习
- 2024智慧城市大数据信息资源标识编码规范
- 【卫龙食品公司内部控制现状问题及优化的案例分析7100字(论文)】
- 人教版五年级语文下册全册课件【完整版】
- 产教融合背景下职业院校“五金”建设研究
- 遗传的分子基础(遗传学基础课件)
- 配电工程项目规范
- 浙江省幼儿园教育装备要求规范(试行)
评论
0/150
提交评论