浙江专用2020版高考数学一轮总复习专题7不等式7.5绝对值不等式检测.doc_第1页
浙江专用2020版高考数学一轮总复习专题7不等式7.5绝对值不等式检测.doc_第2页
浙江专用2020版高考数学一轮总复习专题7不等式7.5绝对值不等式检测.doc_第3页
浙江专用2020版高考数学一轮总复习专题7不等式7.5绝对值不等式检测.doc_第4页
浙江专用2020版高考数学一轮总复习专题7不等式7.5绝对值不等式检测.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7.5绝对值不等式挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点含绝对值不等式的解法1.理解绝对值三角不等式的代数证明和几何意义,能利用绝对值三角不等式证明一些简单的绝对值不等式.2.理解|x|a的解法与几何意义.掌握|x|a,|ax+b|c,|ax+b|c型不等式的解法.3.掌握|x-a|+|x-b|c和|x-a|+|x-b|c型不等式的解法.2017浙江,15,17绝对值三角不等式的应用,含绝对值不等式的解法向量的模的最值,函数最值2016浙江,8,20绝对值三角不等式的应用不等式命题的判断、数列不等式的证明2015浙江,18绝对值三角不等式的应用,含绝对值不等式的解法二次函数的最值分析解读1.主要考查绝对值的几何意义和绝对值不等式的解法,利用绝对值三角不等式证明一些简单的绝对值不等式.2.绝对值不等式常与函数(例:2015浙江,18)、导数、数列(例:2016浙江,20)等知识联系在一起,难度较大,是近两年浙江高考命题的热点.3.预计2020年高考中,仍会对绝对值不等式进行考查.利用绝对值三角不等式证明一些简单的绝对值不等式,以及含绝对值不等式的解法仍是重点之一,复习时要足够重视.破考点【考点集训】考点含绝对值不等式的解法1.(2018浙江杭州高三教学质检,1)设集合A=x|x+2|2,B=0,4,则R(AB)=() A.RB.0C.x|xR,x0D.答案C2.(2018浙江浙东北联盟期中,17)设a,bR,a0)型的不等式的解法1.已知不等式|2x-1|-|x+1|2的解集为x|axb.求a,b的值.解析当x时,原不等式即为2x-1-(x+1)2,解得x4,故x4.当-1x时,原不等式即为1-2x-(x+1)-,故-x.当x-1时,原不等式即为1-2x+(x+1)0,此时无解.综上得-x4,故a=-,b=4.评析本题考查绝对值不等式的解法,考查分类讨论的思想.2.(2017课标,23,10分)已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)g(x)的解集;(2)若不等式f(x)g(x)的解集包含-1,1,求a的取值范围.解析本题考查含绝对值的不等式的解法,考查学生的运算求解能力以及对数形结合思想的应用能力.(1)解法一(零点分段法):当a=1时,不等式f(x)g(x)等价于x2-x+|x+1|+|x-1|-40.当x1时,式化为x2+x-40,从而11,2,-1x1,-2x,x-1,当a=1时, f(x) =-x2+x+4,两个函数的图象如图所示.易得图中两条曲线的交点坐标为(-1,2)和-1+172,-1+17,所以f(x)g(x)的解集为x|-1x-1+172.(2)解法一(等价转化法):当x-1,1时,g(x)=2.所以f(x)g(x)的解集包含-1,1等价于当x-1,1时f(x)2.又f(x)在-1,1的最小值必为f(-1)与f(1)之一,所以f(-1)2且f(1)2,得-1a1.所以a的取值范围为-1,1.解法二(分类讨论法):当x-1,1时,g(x)=2,所以f(x)g(x)的解集包含-1,1等价于x-1,1时f(x)2,即-x2+ax+42,当x=0时,-x2+ax+42成立;当x(0,1时,-x2+ax+42可化为ax-,而y=x-在(0,1单调递增,最大值为-1,所以a-1;当x-1,0)时,-x2+ax+42可化为ax-,而y=x-在-1,0)单调递增,最小值为1,所以a1.综上,a的取值范围为-1,1.过专题【五年高考】A组自主命题浙江卷题组考点含绝对值不等式的解法(2016浙江,8,5分)已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|1,则a2+b2+c2100B.若|a2+b+c|+|a2+b-c|1,则a2+b2+c2100C.若|a+b+c2|+|a+b-c2|1,则a2+b2+c2100D.若|a2+b+c|+|a+b2-c|1,则a2+b2+c2100答案DB组统一命题、省(区、市)卷题组考点含绝对值不等式的解法1.(2015山东,5,5分)不等式|x-1|-|x-5|2的解集是() A.(-,4)B.(-,1)C.(1,4)D.(1,5)答案A2.(2018课标全国理,23,10分)设函数f(x)=5-|x+a|-|x-2|.(1)当a=1时,求不等式f(x)0的解集;(2)若f(x)1,求a的取值范围.解析(1)当a=1时, f(x)=2x+4,x-1,2,-12.可得f(x)0的解集为x|-2x3.(2)f(x)1等价于|x+a|+|x-2|4.而|x+a|+|x-2|a+2|,且当x=2时等号成立.故f(x)1等价于|a+2|4.由|a+2|4可得a-6或a2.所以a的取值范围是(-,-62,+).方法总结解含有两个或两个以上绝对值的不等式,常用零点分段法或数形结合法求解;求含有两个或两个以上绝对值的函数的最值,常用绝对值三角不等式或数形结合法求解.3.(2018课标全国,23,10分)选修45:不等式选讲设函数f(x)=|2x+1|+|x-1|.(1)画出y=f(x)的图象;(2)当x0,+)时, f(x)ax+b,求a+b的最小值.解析本题考查函数的图象与绝对值不等式恒成立问题.(1)f(x)=-3x,x-12,x+2,-12x1,3x,x1.y=f(x)的图象如图所示.(2)由(1)知,y=f(x)的图象与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a3且b2时, f(x)ax+b在0,+)成立,因此a+b的最小值为5.易错警示对“零点分段法”的理解不到位若不等式含有两个或两个以上的绝对值并含有未知数,通常先把每个绝对值内代数式等于零时的未知数的值求出(即零点),然后将这些零点标在数轴上,此时数轴被零点分成了若干段(区间),在每一段区间里,每一个绝对值符号内的代数式的符号确定,此时利用绝对值的定义可以去掉绝对值符号.解后反思绝对值不等式问题常见类型及解题策略(1)直接求解不等式,主要利用绝对值的意义、不等式的性质想办法去掉绝对值符号求解.(2)已知不等式的解集求参数值,利用绝对值三角不等式或函数求相应最值,然后再求参数的取值范围.C组教师专用题组考点含绝对值不等式的解法1.(2015重庆,16,5分)若函数f(x)=|x+1|+2|x-a|的最小值为5,则实数a=.答案-6或42.(2014广东,9,5分)不等式|x-1|+|x+2|5的解集为.答案x|x-3或x23.(2014湖南,13,5分)若关于x的不等式|ax-2|3的解集为x-x1时,等价于a-1+a3,解得a2.所以a的取值范围是2,+).(10分)方法指导(1)将a=2代入不等式,化简后去绝对值求解;(2)要使f(x)+g(x)3恒成立,只需f(x)+g(x)的最小值3即可,利用|a|+|b|ab|可求最值.6.(2016课标全国,24,10分)已知函数f(x)=x-12+x+12,M为不等式f(x)2的解集.(1)求M;(2)证明:当a,bM时,|a+b|1+ab|.(1)f(x)=-2x,x-12,1,-12x12,2x,x12.(2分)当x-时,由f(x)2得-2x2,解得-1x-;(3分)当-x时, f(x)2;(4分)当x时,由f(x)2得2x2,解得x1.(5分)所以f(x)2的解集M=x|-1x1.(6分)(2)证明:由(1)知,当a,bM时,-1a1,-1b1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)0.因此|a+b|1的解集.解析(1)f(x)=x-4,x-1,3x-2,-132,(4分)y=f(x)的图象如图所示.(6分)(2)解法一:由f(x)的表达式及图象知,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=或x=5,(8分)故f(x)1的解集为x|1x3; f(x)-1的解集为x|x5.(9分)所以|f(x)|1的解集为x|x13或1x5.(10分)解法二:根据y=f(x)的分段函数表达式,有:当x-1时,|f(x)|1的解集为x|x-1;当-11的解集为x|-1x13x|1-时,|f(x)|1的解集为x|32x5.综上,|f(x)|1的解集为x|x13或1x5.8.(2015课标,24,10分)已知函数f(x)=|x+1|-2|x-a|,a0.(1)当a=1时,求不等式f(x)1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.解析(1)解法一:当a=1时, f(x)1化为|x+1|-2|x-1|-10.当x-1时,不等式化为x-40,无解;当-1x0,解得x0,解得1x1的解集为x23x2.(5分)解法二:当a=1时, f(x)=x-3,x1.画出f(x)的图象 (如图所示),根据图象可得不等式f(x)1的解集为x|23x2.(5分)(2)由题设可得, f(x)=x-1-2a,xa.所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A2a-13,0,B(2a+1,0),C(a,a+1),ABC的面积为 (a+1)2.由题设得 (a+1)26,故a2.所以a的取值范围为(2,+).(10分)9.(2015江苏,21D,10分)解不等式x+|2x+3|2.解析原不等式可化为x-32,-x-32或x-32,3x+32.解得x-5或x-.综上,原不等式的解集是x|x-5或x-13.评析本小题主要考查含绝对值不等式的解法,考查分类讨论的能力.10.(2014辽宁,24,10分)设函数f(x)=2|x-1|+x-1,g(x)=16x2-8x+1,记f(x)1的解集为M,g(x)4的解集为N.(1)求M;(2)当xMN时,证明:x2f(x)+xf(x)2.解析(1)f(x)=3x-3,x1,+),1-x,x(-,1).当x1时,由f(x)=3x-31得x,故1x;当x1时,由f(x)=1-x1得x0,故0x0).(1)证明:f(x)2;(2)若f(3)0,得f(x)=x+1a+|x-a|x+1a-(x-a)=+a2.所以f(x)2.(2)f(3)=3+1a+|3-a|.当a3时, f(3)=a+,由f(3)5得3a5+212.当0a3时, f(3)=6-a+,由f(3)5得1+521.(1)当a=2时,求不等式f(x)4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|2的解集为x|1x2,求a的值.解析(1)当a=2时, f(x)+|x-4|=-2x+6,x2,2,2x4,2x-6,x4.当x2时,由f(x)4-|x-4|得-2x+64,解得x1;当2x4时, f(x)4-|x-4|无解;当x4时,由f(x)4-|x-4|得2x-64,解得x5,所以f(x)4-|x-4|的解集为x|x1或x5.(4分)(2)记h(x)=f(2x+a)-2f(x),则h(x)=-2a,x0,4x-2a,0xa,2a,xa.由|h(x)|2,解得a-12xa+12.又已知|h(x)|2的解集为x|1x2,所以a-12=1,a+12=2,于是a=3.(10分)13.(2013课标,24,10分)已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)-1,且当x-a2,12时, f(x)g(x),求a的取值范围.解析(1)当a=-2时,不等式f(x)g(x)化为|2x-1|+|2x-2|-x-30.设函数y=|2x-1|+|2x-2|-x-3,则y=-5x,x1.其图象如图所示.从图象可知,当且仅当x(0,2)时,y0.所以原不等式的解集是x|0x2.(2)当x-a2,12时, f(x)=1+a.不等式f(x)g(x)化为1+ax+3.所以xa-2对x-a2,12都成立.故-a-2,即a.从而a的取值范围是-1,43.方法总结(1)解含有绝对值符号的不等式的关键是去掉绝对值符号,可利用零点分段讨论法把绝对值不等式转化为我们熟悉的一元一次不等式或一元二次不等式,也可设出函数,利用函数图象解决.(2)对于不等式恒成立求参数问题,常分离参数,进而构造函数,转化为求最值问题.14.(2012课标全国,24,10分)选修45:不等式选讲已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)3的解集;(2)若f(x)|x-4|的解集包含1,2,求a的取值范围.解析(1)当a=-3时, f(x)=-2x+5,x2,1,2x3,2x-5,x3.当x2时,由f(x)3得-2x+53,解得x1;当2x3时, f(x)3无解;当x3时,由f(x)3得2x-53,解得x4,所以f(x)3的解集为x|x1x|x4.(2)f(x)|x-4|x-4|-|x-2|x+a|.当x1,2时,|x-4|-|x-2|x+a|4-x-(2-x)|x+a|-2-ax2-a.由条件得-2-a1且2-a2,即-3a0.故满足条件的a的取值范围为-3,0.评析本题考查了含绝对值不等式的解法,运用分类讨论解含绝对值的不等式,考查了学生的运算求解能力.【三年模拟】一、选择题(每小题4分,共12分)1.(2019届浙江嘉兴9月基础测试,10)已知mR,函数f(x)=x+3x-1-m+m在2,5上的最大值是5,则m的取值范围是() A.-,72B.-,52C.2,5D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论