




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题25 立体几何中综合问题 考纲解读明方向考点内容解读要求高考示例常考题型预测热度空间向量及其应用理解直线的方向向量与平面的法向量;能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系;能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理);能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用掌握2017浙江,9;2017课标全国,19;2017天津,17;2017江苏,22;2017北京,16;2017浙江,19;2017山东,17;2016课标全国,19;2016山东,17;2016浙江,17;2015课标,19;2014陕西,17;2013课标全国,18解答题分析解读1.能运用共线向量、共面向量、空间向量基本定理及有关结论证明点共线、点共面、线共面及线线、线面的平行与垂直问题;会求线线角、线面角;会求点点距、点面距等距离问题,从而培养用向量法思考问题和解决问题的能力.2.会利用空间向量的坐标运算、两点间距离公式、夹角公式以及相关结论解决有关平行、垂直、长度、角、距离等问题,从而培养准确无误的运算能力.3.本节内容在高考中延续解答题的形式,以多面体为载体,求空间角的命题趋势较强,分值约为12分,属中档题.2018年高考全景展示1【2018年理数天津卷】如图,且AD=2BC,,且EG=AD,且CD=2FG,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:;(II)求二面角的正弦值;(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60,求线段DP的长.【答案】()证明见解析;();().详解:依题意,可以建立以D为原点,分别以,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,1),N(1,0,2)()依题意=(0,2,0),=(2,0,2)设n0=(x,y,z)为平面CDE的法向量,则 即 不妨令z=1,可得n0=(1,0,1)又=(1,1),可得,又因为直线MN平面CDE,所以MN平面CDE()依题意,可得=(1,0,0),=(0,1,2)设n=(x,y,z)为平面BCE的法向量,则 即 不妨令z=1,可得n=(0,1,1)设m=(x,y,z)为平面BCF的法向量,则 即 不妨令z=1,可得m=(0,2,1)因此有cos=,于是sin=所以,二面角EBCF的正弦值为()设线段DP的长为h(h0,2),则点P的坐标为(0,0,h),可得易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60=,解得h=0,2所以线段的长为.点睛:本题主要考查空间向量的应用,线面平行的证明,二面角问题等知识,意在考查学生的转化能力和计算求解能力.2【2018年理北京卷】如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,的中点,AB=BC=,AC=2()求证:AC平面BEF;()求二面角B-CD-C1的余弦值;()证明:直线FG与平面BCD相交【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析【解析】分析:(1)由等腰三角形性质得,由线面垂直性质得,由三棱柱性质可得,因此,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系E-ABF,设立各点坐标,利用方程组解得平面BCD一个法向量,根据向量数量积求得两法向量夹角,再根据二面角与法向量夹角相等或互补关系求结果,(3)根据平面BCD一个法向量与直线FG方向向量数量积不为零,可得结论.详解:解:()在三棱柱ABC-A1B1C1中,CC1平面ABC,四边形A1ACC1为矩形又E,F分别为AC,A1C1的中点,ACEFAB=BCACBE,AC平面BEF()由(I)知ACEF,ACBE,EFCC1又CC1平面ABC,EF平面ABCBE平面ABC,EFBE如图建立空间直角坐称系E-xyz由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1),设平面BCD的法向量为,令a=2,则b=-1,c=-4,平面BCD的法向量,又平面CDC1的法向量为,由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为()平面BCD的法向量为,G(0,2,1),F(0,0,2),与不垂直,GF与平面BCD不平行且不在平面BCD内,GF与平面BCD相交点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.3【2018年江苏卷】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值【答案】(1)(2)【解析】分析:(1)先建立空间直角坐标系,设立各点坐标,根据向量数量积求得向量的夹角,再根据向量夹角与异面直线所成角的关系得结果;(2)利用平面的方向量的求法列方程组解得平面的一个法向量,再根据向量数量积得向量夹角,最后根据线面角与所求向量夹角之间的关系得结果.详解:如图,在正三棱柱ABCA1B1C1中,设AC,A1C1的中点分别为O,O1,则OBOC,OO1OC,OO1OB,以为基底,建立空间直角坐标系Oxyz因为AB=AA1=2,所以(1)因为P为A1B1的中点,所以,从而,故因此,异面直线BP与AC1所成角的余弦值为点睛:本题考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.4【2018年江苏卷】在平行六面体中,求证:(1);(2)【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,ABA1B1因为AB平面A1B1C,A1B1平面A1B1C,所以AB平面A1B1C(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1A1B又因为AB1B1C1,BCB1C1,所以AB1BC又因为A1BBC=B,A1B平面A1BC,BC平面A1BC,所以AB1平面A1BC因为AB1平面ABB1A1,所以平面ABB1A1平面A1BC点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.5【2018年理新课标I卷】如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析.(2) .【解析】分析:(1)首先从题的条件中确定相应的垂直关系,即BFPF,BFEF,又因为,利用线面垂直的判定定理可以得出BF平面PEF,又平面ABFD,利用面面垂直的判定定理证得平面PEF平面ABFD.(2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标,求得平面ABFD的法向量,设DP与平面ABFD所成角为,利用线面角的定义,可以求得,得到结果.详解:(1)由已知可得,BFPF,BFEF,又,所以BF平面PEF.又平面ABFD,所以平面PEF平面ABFD.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可.6【2018年全国卷理】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值【答案】(1)见解析(2)【解析】分析:(1)先证平面CMD,得,再证,进而完成证明。(2)先建立空间直角坐标系,然后判断出的位置,求出平面和平面的法向量,进而求得平面与平面所成二面角的正弦值。详解:(1)由题设知,平面CMD平面ABCD,交线为CD.因为BCCD,BC平面ABCD,所以BC平面CMD,故BCDM.因为M为上异于C,D的点,且DC为直径,所以 DMCM.又 BCCM=C,所以DM平面BMC.而DM平面AMD,故平面AMD平面BMC.(2)以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Dxyz.当三棱锥MABC体积最大时,M为的中点.由题设得,设是平面MAB的法向量,则即可取.是平面MCD的法向量,因此,所以面MAB与面MCD所成二面角的正弦值是.点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问主要考查建立空间直角坐标系,利用空间向量求出二面角的平面角,考查数形结合,将几何问题转化为代数问题进行求解,考查学生的计算能力和空间想象能力,属于中档题。7【2018年理数全国卷II】如图,在三棱锥中,为的中点(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值【答案】(1)见解析(2)【解析】分析:(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果.详解:(1)因为,为的中点,所以,且.连结.因为,所以为等腰直角三角形,且,.由知.由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取,所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.2017年高考全景展示1.【2017课标1,理16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,DBC,ECA,FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D、E、F重合,得到三棱锥.当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_.【答案】【解析】试题分析:如下图,设正三角形的边长为x,则., 三棱锥的体积 .令,则,令, ,.【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.2.【2017课标3,理19】如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,ABD=CBD,AB=BD(1)证明:平面ACD平面ABC; (2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值.【答案】(1)证明略;(2) .【解析】试题分析:(1)利用题意证得二面角的平面角为90,则可得到面面垂直;(2) 利用题意求得两个半平面的法向量,然后利用公式二面角的夹角公式可求得二面角的余弦值为 .(2)由题设及(1)知,两两垂直,以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.则 由题设知,四面体ABCE的体积为四面体ABCD的体积的,从而E到平面ABC的距离为D到平面ABC的距离的,即E为DB的中点,得 .故 .设是平面DAE的法向量,则即 可取 .设是平面AEC的法向量,则同理可得 .则 .所以二面角D-AE-C的余弦值为 .【考点】 二面角的平面角;面面角的向量求法【名师点睛】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设m,n分别为平面,的法向量,则二面角与互补或相等,故有|cos |cos|=.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.3.【2017山东,理17】如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的,是的中点.()设是上的一点,且,求的大小;()当,求二面角的大小.【答案】().().【解析】试题分析:()利用,证得平面,利用平面,得到,结合可得.()两种思路,一是几何法,二是空间向量方法,其中思路一:取的中点,连接,.得四边形为菱形,得到.取中点,连接,.得到,从而为所求二面角的平面角.据相关数据即得所求的角.思路二:以为坐标原点,分别以,所在的直线为,轴,建立如图所示的空间直角坐标系.写出相关点的坐标,求平面的一个法向量,平面的一个法向量计算即得.试题解析:()因为,平面,所以平面,又平面,所以,又,因此()解法一:取的中点,连接,.因为,所以四边形为菱形,所以.取中点,连接,.则,所以为所求二面角的平面角.又,所以.在中,由于,由余弦定理得,所以,因此为等边三角形,故所求的角为.解法二:以为坐标原点,分别以,所在的直线为,轴,建立如图所示的空间直角坐标系.由题意得,故,设是平面的一个法向量.由可得取,可得平面的一个法向量.设是平面的一个法向量.由可得取,可得平面的一个法向量.所以.因此所求的角为.【考点】1.垂直关系.2. 空间角的计算.【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.立体几何中角的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好的考查考生的空间想象能力、逻辑推理能力转化与化归思想及基本运算能力等.2016年高考全景展示1【2016高考天津理数】如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF平面ABCD,点G为AB的中点,AB=BE=2.(I)求证:EG平面ADF;(II)求二面角O-EF-C的正弦值;(III)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.【答案】()详见解析()()【解析】试题分析:()利用空间向量证明线面平行,关键是求出面的法向量,利用法向量与直线方向向量垂直进行论证()利用空间向量求二面角,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与二面角相等或互补关系求正弦值()利用空间向量证明线面平行,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与线面角互余关系求正弦值试题解析:依题意,如图,以为点,分别以的方向为轴,轴、轴的正方向建立空间直角坐标系,依题意可得,.(I)证明:依题意,.设为平面的法向量,则,即 .不妨设,可得,又,可得,又因为直线,所以.(II)解:易证,为平面的一个法向量.依题意,.设为平面的法向量,则,即 .不妨设,可得.因此有,于是,所以,二面角的正弦值为.(III)解:由,得.因为,所以,进而有,从而,因此.所以,直线和平面所成角的正弦值为.考点:利用空间向量解决立体几何问题2.【2016年高考北京理数】(本小题14分)如图,在四棱锥中,平面平面,.(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.【答案】(1)见解析;(2);(3)存在,【解析】试题分析:(1)由面面垂直性质定理知AB平面;根据线面垂直性质定理可知,再由线面垂直判定定理可知平面;(2)取的中点,连结,以为坐标原点建立空间直角坐标系,利用向量法可求出直线与平面所成角的正弦值;(3)假设存在,根据A,P,M三点共线,设,根据平面,即,求的值,即可求出的值.试题解析:(1)因为平面平面,所以平面,所以,又因为,所以平面;(2)取的中点,连结,因为,所以.又因为平面,平面平面,所以平面.因为平面,所以.因为,所以.如图建立空间直角坐标系,由题意得,.设平面的法向量为,则即令,则.所以.又,所以.所以直线与平面所成角的正弦值为.(3)设是棱上一点,则存在使得.因此点.因为平面,所以平面当且仅当,即,解得.所以在棱上存在点使得平面,此时.考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.3.【2016年高考四川理数】(本小题满分12分)如图,在四棱锥P-ABCD中,ADBC,ADC=PAB=90,BC=CD=AD,E为边AD的中点,异面直线PA与CD所成的角为90. ()在平面PAB内找一点M,使得直线CM平面PBE,并说明理由;()若二面角P-CD-A的大小为45,求直线PA与平面PCE所成角的正弦值.【答案】()详见解析;().【解析】试题分析:()探索线面平行,根据是线面平行的判定定理,先证明线线平行,再得线面平行,而这可以利用已知的平行,易得CDEB;从而知为DC和AB的交点;()求线面角,可以先找到这个角,即作出直线在平面内的射影,再在三角形中解出,也可以利用已知图形中的垂直建立空间直角坐标系,用向量法求出线面角(通过平面的法向量与直线的方向向量的夹角来求得)试题解析:()在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环卫公司冬季安全培训大纲
- 票务代理客户满意度调查与分析考核试卷
- 护理查房介绍
- 电气照明及安全用电概念考核试卷
- 报纸的企业发展历程考核试卷
- 全科医生临床思维培训大纲
- 培训机构学科课件
- 水产品养殖的环境影响评价与对策考核试卷
- 公司员工工作述职报告(6篇)
- 幼师保育老师述职报告【7篇】
- 重大事故隐患判定标准课件
- Python编程案例教程全套教学课件
- 手阳明大肠经(经络腧穴课件)
- IATF16949-COP-内部审核检查表+填写记录
- 2024新《公司法》亮点全面解读课件
- 中国工商银行数据中心2023年校园招聘60名人才笔试上岸历年典型考题与考点剖析附带答案详解
- 中华护理学会成人肠内营养支持护理团标解读
- 2020-2021学年天津市河西区八年级(下)期中语文试卷(附答案详解)
- 特种设备检验申请单
- 马渭丽《月光下的中国》
- AQ-T 1009-2021矿山救护队标准化考核规范
评论
0/150
提交评论