中考数学二轮复习 专题二 解答重难点题型突破 题型六 二次函数与几何图形综合题课件.ppt_第1页
中考数学二轮复习 专题二 解答重难点题型突破 题型六 二次函数与几何图形综合题课件.ppt_第2页
中考数学二轮复习 专题二 解答重难点题型突破 题型六 二次函数与几何图形综合题课件.ppt_第3页
中考数学二轮复习 专题二 解答重难点题型突破 题型六 二次函数与几何图形综合题课件.ppt_第4页
中考数学二轮复习 专题二 解答重难点题型突破 题型六 二次函数与几何图形综合题课件.ppt_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

题型六二次函数与几何图形综合题,专题二解答重难点题型突破,类型一二次函数与图形判定【例1】(2017营口)如图,抛物线yax2bx2的对称轴是直线x1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(2,0),点P为抛物线上的一个动点,过点P作PDx轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD4PE时,求四边形POBE的面积;,(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由,(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由(3)若存在点P,使PCF45,请直接写出相应的点P的坐标,【对应训练】1(2017新乡模拟)如图,已知抛物线yax2bxc(a0)的顶点坐标为Q(2,1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PDy轴,交AC于点D.(1)求该抛物线的解析式;(2)当ADP是直角三角形时,求点P的坐标;,(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由,1解:(1)抛物线的顶点为Q(2,1),设抛物线的解析式为ya(x2)21,将C(0,3)代入上式,得:3a(02)21,a1;y(x2)21,即yx24x3;(2)分两种情况:当点P1为直角顶点时,点P1与点B重合;令y0,得x24x30,解得x11,x23;点A在点B的右边,B(1,0),A(3,0);P1(1,0);,设D2(x,x3),P2(x,x24x3),则有:(x3)(x24x3)0,即x25x60;解得x12,x23(舍去);当x2时,yx24x3224231;P2的坐标为P2(2,1)(即为抛物线顶点)P点坐标为P1(1,0),P2(2,1);,【对应训练】1(2017甘肃)如图,已知二次函数yax2bx4的图象与x轴交于点B(2,0),点C(8,0),与y轴交于点A.(1)求二次函数yax2bx4的表达式;(2)连接AC,AB,若点N在线段BC上运动(不与点B,C重合),过点N作NMAC,交AB于点M,当AMN面积最大时,求N点的坐标;(3)连接OM,在(2)的结论下,求OM与AC的数量关系,类型三二次函数与线段问题(2015.23,2012.23,2014.23)【例4】(2015河南)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PFBC于点F,点D、E的坐标分别为(0,6)、(4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;,(3)小明进一步探究得出结论:若将“使PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使PDE的周长最小的点P也是一个“好点”请直接写出所有“好点”的个数,并求出PDE周长最小时“好点”的坐标,【对应训练】1(2017赤峰)如图,二次函数yax2bxc(a0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4),(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在,请说明理由,解:(1)抛物线的顶点C的坐标为(1,4),可设抛物线解析式为ya(x1)24,点B(3,0)在该抛物线的图象上,0a(31)24,解得a1,抛物线解析式为y(x1)24,即yx22x3,点D在y轴上,令x0可得y3,D点坐标为(0,3),可设直线BD解析式为ykx3,把B点坐标代入可得3k30,解得k1,直线BD解析式为yx3;,2(2017苏州)如图,二次函数yx2bxc的图象与x轴交于A、B两点,与y轴交于点C,OBOC.点D在函数图象上,CDx轴,且CD2,直线l是抛物线的对称轴,E是抛物线的顶点(1)求b、c的值;(2)如图,连接BE,线段OC上的点F关于直线l的对称点F恰好在线段BE上,求点F的坐标;,(3)如图,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得PQN与APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由,(2)设点F的坐标为(0,m)对称轴为直线x1,点F关于直线l的对称点F的坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论