




免费预览已结束,剩余18页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2017年上海市杨浦区高考数学二模试卷一、填空题1(4分)三阶行列式中,5的余子式的值是2(4分)若实数0,若函数f(x)=cos(x)+sin(x)的最小正周期为,则=3(4分)已知圆锥的底面半径和高均为1,则该圆锥的侧面积为4(4分)设向量=(2,3),向量=(6,t),若与夹角为钝角,则实数t的取值范围为5(4分)集合A=1,3,a2,集合B=a+1,a+2,若BA=A,则实数a=6(4分)设z1、z2是方程z2+2z+3=0的两根,则|z1z2|=7设f(x)是定义在R上的奇函数,当x0时,f(x)=2x3,则不等式f(x)5的解为8若变量x、y满足约束条件,则z=yx的最小值为9小明和小红各自掷一颗均匀的正方体骰子,两人相互独立地进行,则小明掷出的点数不大于2或小红掷出的点数不小于3的概率为10设A是椭圆+=1(a0)上的动点,点F的坐标为(2,0),若满足|AF|=10的点A有且仅有两个,则实数a的取值范围为11已知a0,b0,当(a+4b)2+取到最小值时,b=12设函数fa(x)=|x|+|xa|,当a在实数范围内变化时,在圆盘x2+y21内,且不在任一fa(x)的图象上的点的全体组成的图形的面积为二、选择题13设zC且z0,“z是纯虚数”是“z2R”的()A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件14设等差数列an的公差为d,d0,若an的前10项之和大于其前21项之和,则()Ad0Bd0Ca160Da16015如图,N、S是球O直径的两个端点,圆C1是经过N和S点的大圆,圆C2和圆C3分别是所在平面与NS垂直的大圆和小圆,圆C1和C2交于点A、B,圆C1和C3交于点C、D,设a、b、c分别表示圆C1上劣弧CND的弧长、圆C2上半圆弧AB的弧长、圆C3上半圆弧CD的弧长,则a、b、c的大小关系为()Aba=cBb=caCbacDbca16对于定义在R上的函数f(x),若存在正常数a、b,使得f(x+a)f(x)+b对一切xR均成立,则称f(x)是“控制增长函数”,在以下四个函数中:f(x)=x2+x+1; f(x)=; f(x)=sin(x2);f(x)=xsinx是“控制增长函数”的有()ABCD三、解答题17(14分)如图,正方体ABCDA1B1C1D1中,AB=4,P、Q分别是棱BC与B1C1的中点(1)求异面直线D1P和A1Q所成角的大小;(2)求以A1、D1、P、Q四点为四个顶点的四面体的体积18(14分)已知函数f(x)=(1)判断函数f(x)的奇偶性,并证明;(2)若不等式f(x)log9(2c1)有解,求c的取值范围19(14分)如图,扇形ABC是一块半径为2千米,圆心角为60的风景区,P点在弧BC上,现欲在风景区中规划三条商业街道,要求街道PQ与AB垂直,街道PR与AC垂直,线段RQ表示第三条街道(1)如果P位于弧BC的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ、PR、RQ每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)20(16分)设数列an满足an=A4n+Bn,其中A、B是两个确定的实数,B0(1)若A=B=1,求an的前n项之和;(2)证明:an不是等比数列;(3)若a1=a2,数列an中除去开始的两项之外,是否还有相等的两项?证明你的结论21(18分)设双曲线的方程为x2=1,过其右焦点F且斜率不为零的直线l1与双曲线交于A、B两点,直线l2的方程为x=t,A、B在直线l2上的射影分别为C、D(1)当l1垂直于x轴,t=2时,求四边形ABDC的面积;(2)当t=0,l1的斜率为正实数,A在第一象限,B在第四象限时,试比较和1的大小,并说明理由;(3)是否存在实数t(1,1),使得对满足题意的任意直线l1,直线AD和直线BC的交点总在x轴上,若存在,求出所有的t的值和此时直线AD与BC交点的位置;若不存在,说明理由2017年上海市杨浦区高考数学二模试卷参考答案与试题解析一、填空题1三阶行列式中,5的余子式的值是12【考点】OU:特征向量的意义【分析】去掉5所在行与列,即得5的余子式,从而求值【解答】解:由题意,去掉5所在行与列得: =12故答案为12【点评】本题以三阶行列式为载体,考查余子式,关键是理解余子式的定义2若实数0,若函数f(x)=cos(x)+sin(x)的最小正周期为,则=2【考点】H1:三角函数的周期性及其求法【分析】利用两角和的正弦公式化简函数的解析式,再利用正弦函数的周期性,求得的值【解答】解:实数0,若函数f(x)=cos(x)+sin(x)=sin(x+)的最小正周期为,=,=2,故答案为:2【点评】本题主要考查两角和的正弦公式,正弦函数的周期性,属于基础题3已知圆锥的底面半径和高均为1,则该圆锥的侧面积为【考点】L5:旋转体(圆柱、圆锥、圆台)【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可【解答】解:圆锥的底面半径为1,高为1,母线长l为: =,圆锥的侧面积为:rl=1=,故答案为:【点评】题考查了圆锥的侧面积的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键4设向量=(2,3),向量=(6,t),若与夹角为钝角,则实数t的取值范围为(,4)【考点】9S:数量积表示两个向量的夹角【分析】由题意可得0,且、不共线,即,由此求得实数t的取值范围【解答】解:若与夹角为钝角,向量=(2,3),向量=(6,t),则0,且、不共线,求得t4,故答案为:(,4)【点评】本题主要考查两个向量的数量公式,两个向量共线的性质,属于基础题5集合A=1,3,a2,集合B=a+1,a+2,若BA=A,则实数a=2【考点】18:集合的包含关系判断及应用【分析】根据并集的意义,由AB=A得到集合B中的元素都属于集合A,列出关于a的方程,求出方程的解得到a的值【解答】解:由AB=A,得到BA,A=1,3,a2,集合B=a+1,a+2,a+1=1,a+2=a2,或a+1=a2,a+2=1,或a+1=3,a+2=a2,或a+1=a2,a+2=3,解得:a=2故答案为2【点评】此题考查了并集的意义,以及集合中元素的特点集合中元素有三个特点,即确定性,互异性,无序性学生做题时注意利用元素的特点判断得到满足题意的a的值6设z1、z2是方程z2+2z+3=0的两根,则|z1z2|=2【考点】A7:复数代数形式的混合运算【分析】求出z,即可求出|z1z2|【解答】解:由题意,z=1i,|z1z2|=|2i|=2,故答案为2【点评】本题考查复数的运算与球模,考查学生的计算能力,比较基础7设f(x)是定义在R上的奇函数,当x0时,f(x)=2x3,则不等式f(x)5的解为(,3)【考点】3L:函数奇偶性的性质【分析】根据函数奇偶性的性质求出当x0的解析式,讨论x0,x0,x=0,解不等式即可【解答】解:若x0,则x0,当x0时,f(x)=2x3,当x0时,f(x)=2x3,f(x)是定义在R上的奇函数,f(x)=2x3=f(x),则f(x)=2x+3,x0,当x0时,不等式f(x)5等价为2x35即2x2,无解,不成立;当x0时,不等式f(x)5等价为2x+35即2x8,得x3,即x3;当x=0时,f(0)=0,不等式f(x)5不成立,综上,不等式的解为x3故不等式的解集为(,3)故答案为(,3)【点评】本题主要考查不等式的解集的求解,根据函数奇偶性的性质求出函数的解析式是解决本题的关键8若变量x、y满足约束条件,则z=yx的最小值为4【考点】7C:简单线性规划【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案【解答】解:由约束条件作出可行域如图,联立,解得A(8,4),化目标函数z=yx,得y=x+z,由图可知,当直线y=x+z过点A(8,4)时,直线在y轴上的截距最小,z有最小值为4故答案为:4【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题9小明和小红各自掷一颗均匀的正方体骰子,两人相互独立地进行,则小明掷出的点数不大于2或小红掷出的点数不小于3的概率为【考点】CC:列举法计算基本事件数及事件发生的概率【分析】先求出基本事件总数n=66=36,再求出小明掷出的点数不大于2或小红掷出的点数不小于3包含的基本事件个数m=26+6424=28,由此能求出小明掷出的点数不大于2或小红掷出的点数不小于3的概率【解答】解:小明和小红各自掷一颗均匀的正方体骰子,两人相互独立地进行,基本事件总数n=66=36,小明掷出的点数不大于2或小红掷出的点数不小于3包含的基本事件个数:m=26+6424=28,小明掷出的点数不大于2或小红掷出的点数不小于3的概率为:p=故答案为:【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用10设A是椭圆+=1(a0)上的动点,点F的坐标为(2,0),若满足|AF|=10的点A有且仅有两个,则实数a的取值范围为8a12【考点】K4:椭圆的简单性质【分析】由题意,F是椭圆的焦点,满足|AF|=10的点A有且仅有两个,可得a210a+2,即可得出结论【解答】解:由题意,F是椭圆的焦点,满足|AF|=10的点A有且仅有两个,a210a+2,8a12,故答案为:8a12【点评】本题考查椭圆的方程与性质,考查学生的计算能力,比较基础11已知a0,b0,当(a+4b)2+取到最小值时,b=【考点】7F:基本不等式【分析】根据基本不等式,a=4b时取等号,进而得出,进一步可求出a=1,时,取到最小值,即求出了此时的b的值【解答】解:a0,b0;,当a=4b时取“=”;(a+4b)216ab;=8,当,即,a=1时取“=”;此时,b=故答案为:【点评】考查基本不等式,注意基本不等式等号成立的条件,不等式的性质12设函数fa(x)=|x|+|xa|,当a在实数范围内变化时,在圆盘x2+y21内,且不在任一fa(x)的图象上的点的全体组成的图形的面积为【考点】7F:基本不等式【分析】根据题意,分析可得函数fa(x)=|x|+|xa|(当a在实数范围内变化)的图象,进而可得在圆盘x2+y21内,且不在任一fa(x)的图象上的点单位圆的,由圆的面积公式计算可得答案【解答】解:根据题意,对于函数fa(x)=|x|+|xa|,当a变化时,其图象为在圆盘x2+y21内,且不在任一fa(x)的图象上的点单位圆的,则其面积S=;故答案为:【点评】本题考查函数的图象,关键是分析函数fa(x)=|x|+|xa|(当a在实数范围内变化)的图象二、选择题13设zC且z0,“z是纯虚数”是“z2R”的()A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断【分析】zC且z0,“z是纯虚数”“z2R”,反之不成立,例如取z=2即可判断出结论【解答】解:zC且z0,“z是纯虚数”“z2R”,反之不成立,例如取z=2“z是纯虚数”是“z2R”的充分不必要条件故选:A【点评】本题考查了纯虚数的定义、复数的运算法则、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题14设等差数列an的公差为d,d0,若an的前10项之和大于其前21项之和,则()Ad0Bd0Ca160Da160【考点】85:等差数列的前n项和【分析】由an的前10项之和大于其前21项之和,得到a115d,由此得到a16=a1+15d0【解答】解:等差数列an的公差为d,d0,an的前10项之和大于其前21项之和,10a1+21a1+d,11a1165d,即a115d,a16=a1+15d0故选:C【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意等差数列的性质的合理运用15如图,N、S是球O直径的两个端点,圆C1是经过N和S点的大圆,圆C2和圆C3分别是所在平面与NS垂直的大圆和小圆,圆C1和C2交于点A、B,圆C1和C3交于点C、D,设a、b、c分别表示圆C1上劣弧CND的弧长、圆C2上半圆弧AB的弧长、圆C3上半圆弧CD的弧长,则a、b、c的大小关系为()Aba=cBb=caCbacDbca【考点】L*:球面距离及相关计算【分析】分别计算a,b,c,即可得出结论【解答】解:设球的半径为R,球心角COD=2,则b=R,a=2R,CDAB,cb,CD=2Rsin,c=2Rsin,0, =1,ca,bca,故选D【点评】本题考查球中弧长的计算,考查学生的计算能力,正确计算是关键16对于定义在R上的函数f(x),若存在正常数a、b,使得f(x+a)f(x)+b对一切xR均成立,则称f(x)是“控制增长函数”,在以下四个函数中:f(x)=x2+x+1; f(x)=; f(x)=sin(x2);f(x)=xsinx是“控制增长函数”的有()ABCD【考点】3T:函数的值【分析】假设各函数为“控制增长函数”,根据定义推倒f(x+a)f(x)+b恒成立的条件,判断a,b的存在性即可得出答案【解答】解:对于,f(x+a)f(x)+b可化为:(x+a)2+(x+a)+1x2+x+1+b,即2axa2a+b,即x对一切xR均成立,由函数的定义域为R,故不存在满足条件的正常数a、b,故f(x)=x2+x+1不是“控制增长函数”;对于,若f(x)=是“控制增长函数”,则f(x+a)f(x)+b可化为:+b,|x+a|x|+b2+2b恒成立,又|x+a|x|+a,|x|+a|x|+b2+2b,显然当ab2时式子恒成立,f(x)=是“控制增长函数”;对于,1f(x)=sin(x2)1,f(x+a)f(x)2,当b2时,a为任意正数,使f(x+a)f(x)+b恒成立,故f(x)=sin(x2)是“控制增长函数”;对于,若f(x)=xsinx是“控制增长函数”,则(x+a)sin(x+a)xsinx+b恒成立,(x+a)sin(x+a)x+a,x+axsinx+bx+b,即ab,f(x)=xsinx是“控制增长函数”故选C【点评】本题考查了新定义的理解,函数存在性与恒成立问题研究,属于中档题三、解答题17(14分)(2017杨浦区二模)如图,正方体ABCDA1B1C1D1中,AB=4,P、Q分别是棱BC与B1C1的中点(1)求异面直线D1P和A1Q所成角的大小;(2)求以A1、D1、P、Q四点为四个顶点的四面体的体积【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角【分析】(1)以D为原点,DA,DC,DD1为x,y,z轴,建立空间直角坐标系,利用向量法能求出异面直线D1P和A1Q所成角(2)以A1、D1、P、Q四点为四个顶点的四面体的体积V=【解答】解:(1)以D为原点,DA,DC,DD1为x,y,z轴,建立空间直角坐标系,则D1(0,0,4),P(2,4,0),A1(4,0,4),Q(2,4,4),=(2,4,4),=(2,4,0),设异面直线D1P和A1Q所成角为,则cos=,=arccoa异面直线D1P和A1Q所成角为arccos(2)=8,PQ平面A1D1Q,且PQ=4,以A1、D1、P、Q四点为四个顶点的四面体的体积:V=【点评】本题考查异面直线所成角的求法,考查四面体的体积的求法,是中档题,考查推理论证能力、运算求解能力,考查转化化归思想、数形结合思想18(14分)(2017杨浦区二模)已知函数f(x)=(1)判断函数f(x)的奇偶性,并证明;(2)若不等式f(x)log9(2c1)有解,求c的取值范围【考点】3K:函数奇偶性的判断【分析】(1)利用奇函数的定义,即可得出结论;(2)f(x)=+(,),不等式f(x)log9(2c1)有解,可得log9(2c1),即可求c的取值范围【解答】解:(1)函数的定义域为R,f(x)=,f(x)=f(x),函数f(x)是奇函数;(2)f(x)=+(,)不等式f(x)log9(2c1)有解,log9(2c1),02c13,【点评】本题考查奇函数的定义,考查函数的值域,考查学生分析解决问题的能力,属于中档题19(14分)(2017杨浦区二模)如图,扇形ABC是一块半径为2千米,圆心角为60的风景区,P点在弧BC上,现欲在风景区中规划三条商业街道,要求街道PQ与AB垂直,街道PR与AC垂直,线段RQ表示第三条街道(1)如果P位于弧BC的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ、PR、RQ每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)【考点】HU:解三角形的实际应用;HS:余弦定理的应用【分析】(1)由P为于BAC的角平分线上,利用几何关系,分别表示丨PQ丨,丨PR丨,丨RQ丨,即可求得三条街道的总长度;(2)设PAB=,060,根据三角函数关系及余弦定理,即可求得丨PQ丨,丨PR丨,丨RQ丨,则总效益W=丨PQ丨300+丨PR丨200+丨RQ丨400,利用辅助角公式及正弦函数的性质,即可求得答案【解答】解:(1)由P位于弧BC的中点,在P位于BAC的角平分线上,则丨PQ丨=丨PR丨=丨PA丨sinPAB=2sin30=2=1,丨AQ丨=丨PA丨cosPAB=2=,由BAC=60,且丨AQ丨=丨AR丨,QAB为等边三角形,则丨RQ丨=丨AQ丨=,三条街道的总长度l=丨PQ丨+丨PR丨+丨RQ丨=1+1+=2+;(2)设PAB=,060,则丨PQ丨=丨AP丨sin=2sin,丨PR丨=丨AP丨sin(60)=2sin(60)=cossin,丨AQ丨=丨AP丨cos=2cos,丨AR丨=丨AP丨cos(60)=2cos(60)=cos+sin由余弦定理可知:丨RQ丨2=丨AQ丨2+丨AR丨22丨AQ丨丨AR丨cos60,=(2cos)2+(cos+sin)222cos(cos+sin)cos60,=3,则丨RQ丨=,三条街道每年能产生的经济总效益W,W=丨PQ丨300+丨PR丨200+丨RQ丨400=3002sin+(cossin)200+400=400sin+200cos+400,=200(2sin+cos)+400,=200sin(+)+400,tan=,当sin(+)=1时,W取最大值,最大值为200+4001222,三条街道每年能产生的经济总效益最高约为1222万元【点评】本题考查三角函数的综合应用,考查余弦定理,正弦函数图象及性质,辅助角公式,考查计算能力,属于中档题20(16分)(2017杨浦区二模)设数列an满足an=A4n+Bn,其中A、B是两个确定的实数,B0(1)若A=B=1,求an的前n项之和;(2)证明:an不是等比数列;(3)若a1=a2,数列an中除去开始的两项之外,是否还有相等的两项?证明你的结论【考点】8E:数列的求和;8H:数列递推式【分析】(1)运用数列的求和方法:分组求和,结合等比数列和等差数列的求和公式,计算即可得到所求和;(2)运用反证法,假设an是等比数列,由定义,设公比为q,化简整理推出B=0与题意矛盾,即可得证;(3)数列an中除去开始的两项之外,假设还有相等的两项,由题意可得B=12A,构造函数f(x)=4x12x,x0,求出导数和单调性,即可得到结论【解答】解:(1)由an=4n+n,可得an的前n项之和为(4+42+4n)+(1+2+n)=+n(n+1)=(4n1)+(n2+n);(2)证明:假设an是等比数列,即有=q(q为公比),即为Aq4n+Bqn=A4n+1+B(n+1),即Aq=4A,Bq=B,B=0,解得q=4,B=0,这与B0矛盾,则an不是等比数列;(3)若a1=a2,数列an中除去开始的两项之外,假设还有相等的两项,设为ak=am,(k,m不相等),由a1=a2,可得4A+B=16A+2B,即B=12A则an=A4n+Bn=A(4n12n),即有A(4k12k)=A(4m12m),即为4k12k=4m12m,构造函数f(x)=4x12x,x0,f(x)=4xln412,由f(x)=0可得x0=log4(1,2),当xx0时,f(x)0,f(x)递增,故数列an中除去开始的两项之外,再没有相等的两项【点评】本题考查数列的求和方法:分组求和,考查等比数列和等差数列的求和公式,同时考查反证法的运用,以及构造函数法,考查化简整理的运算能力,属于中档题21(18分)(2017杨浦区二模)设双曲线的方程为x2=1,过其右焦点F且斜率不为零的直线l1与双曲线交于A、B两点,直线l2的方程为x=t,A、B在直线l2上的射影分别为C、D(1)当l1垂直于x轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西安文理学院《思辨英语》2023-2024学年第一学期期末试卷
- 新疆农业大学《广播节目播音主持》2023-2024学年第二学期期末试卷
- 濮阳科技职业学院《热流体与冶金传输基础》2023-2024学年第二学期期末试卷
- 新乡工程学院《卫生财务管理》2023-2024学年第一学期期末试卷
- 三峡大学科技学院《食品质量与安全导论》2023-2024学年第二学期期末试卷
- 淄博师范高等专科学校《有机合成与制备综合实验》2023-2024学年第二学期期末试卷
- 泉州信息工程学院《设计效果图》2023-2024学年第二学期期末试卷
- 宁夏民族职业技术学院《计量经济学课程设计》2023-2024学年第二学期期末试卷
- 浙江省温州市文成县黄坦中学2025年初三下学期期终调研测试生物试题试卷含解析
- 山西省忻州市定襄县市级名校2025年初三联考(三)英语试题含答案
- 数学全等三角形课件++2024-2025学年北师大版七年级数学下册
- LBT 235-2022绿色食品设施甜樱桃生产操作规程
- 编织老师考试试题及答案
- 2025年03月重庆市涪陵区新妙镇选聘本土人才1人笔试历年参考题库考点剖析附解题思路及答案详解
- 2025-2030巴基斯坦基础建设行业市场现状供需分析及投资评估规划分析研究报告
- 攀枝花2025年四川攀枝花市东区事业单位春季引才(4人)笔试历年参考题库附带答案详解
- GB/T 27060-2025合格评定良好实践指南
- 2025年《保障中小企业款项支付条例》学习解读课件
- 2025年国家电投集团内蒙古能源有限公司招聘笔试参考题库含答案解析
- 2025年保安证考试常见试题与答案
- 2024年四川眉山中考满分作文《时光剪影中的那抹温柔》
评论
0/150
提交评论