计概率与小学数学教学.doc_第1页
计概率与小学数学教学.doc_第2页
计概率与小学数学教学.doc_第3页
计概率与小学数学教学.doc_第4页
计概率与小学数学教学.doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

计概率与小学数学教学北京师范大学教育学院 刘京莉全日制义务教育数学课程标准(实验稿)中较大幅度地增加了“统计与概率”的内容。因为在信息社会,收集、整理、描述、展示和解释数据,根据情报作出决定和预测,已成为公民日益重要的技能。因此小学数学加入这部分内容是完全必要的,本文将探讨的问题是小学教师应明确哪些基本概念,使教学既具有科学性同时又符合学生的认知特点;如何使学生在形成和解决现实世界问题的过程中,发展统计意识、发展用统计的方法解释数据、表达及交流信息的能力,以及用多种方式来收集、整理和展示他们的思考的能力;统计与概率与小学其它部分的内容是如何联系的。一、基本概念1描述统计。通过调查、试验获得大量数据,用归组、制表、绘图等统计方法对其进行归纳、整理,以直观形象的形式反映其分布特征的方法,如:小学数学中的制表、条形统计图、折线统计图、扇形统计图等都是描述统计。另外计算集中量所反映的一组数据的集中趋势,如算术平均数、中位数、总数、加权算术平均数等,也属于描述统计的范围。其目的是将大量零散的、杂乱无序的数字资料进行整理、归纳、简缩、概括,使事物的全貌及其分布特征清晰、明确地显现出来。2概率的统计定义。人们在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现“出现正面”或“出现反面”的次数大约各占总抛掷次数的: 左右。这里的“大量重复”是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,其试验记录如下:可以看出,随着试验次数的增加,出现正面的频率波动越来越小,频率在05这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,05恰恰就是刻画出现正面可能性大小的数值,05就是抛掷硬币时出现正面的概率。这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的近似值的方法,当试验次数足够大时,可将频率作为概率的近似值。例如100粒种子平均来说大约有90粒种子发芽,则我们说种子的发芽率为90;某类产品平均每1000件产品中大约有10件废品,则我们说该产品的废品率为1。在小学数学中用概率的统计定义,一般求得的是概率的近似值,特别是次数不够大时,这个概率的近似值存在着一定的误差。例如:某地区30年来的10月6日的天气记录里有25次是秋高气爽、晴空万里,问下一年的10月6日是晴天的概率是多少?因为前30年出现晴天的频率为083,所以概率大约是083。3概率的古典定义。对某一类特殊的试验,还可以从另一个角度求它的概率。抛掷一枚硬币时,试验的结果有2种:出现正面、出现反面;由于硬币是均匀的,通过直观分析可以看出出现正面和反面的可能性相同,都是。进一步研究:某试验具有以下性质(1)试验的结果是有限个(n个)(2)每个结果出现的可能性是相同的 (硬币、骰子是均匀的,抛掷时出现每一面的可能性都相同)如果事件A是由上述n个结果中的m个组成,则称事件A发生的概率为mn。例:掷一颗均匀的骰子,求出现2点的概率。由于这个试验满足概率的古典定义的两个条件,且n=6,m=1,出现2点的概率是。又:求出现偶数点的概率?出现偶数点这一事件包含3个结果,2点、 4点、6点。m=3出现偶数点的概率是,即。概率的古典定义不用大量地去试验,只要试验的结果为等可能的有限个的情况,通过分析找出m、n,其概率就可以求出了,其优点是便于计算,但概率的古典定义不如概率的统计定义适用面广,如抛掷一个酒瓶盖子时,就不满足出现每一面的可能性都相同的条件,因此出现正面的概率就不能用概率的古典定义去求,而要用统计定义去近似地求它的概率。在小学数学的教学中,根据小学生的认知水平,应避免学习过多或艰深的术语,从小学低年级开始应该非形式地介绍概率思想,而非严格的定义、单纯的计算,因此,在小学经常用“可能性”来代替“概率”这个概念。但作为教师应该懂得它的意义,否则就会出笑话。有的教师让学生在课上做 20次抛掷硬币的试验,希望学生能得到出现正面的可能性是,因为抛掷的次数少,所以要得出10次正面,是很难做到的,概率的统计定义一般得出的是概率的近似值。二、在学习统计与概率的过程中发展学生的能力统计的内容是用数字描述和解释我们周围的世界,应结合学生生活的实际,如:可以设计成一个活动,使学生主动地投入其中;提出关键的问题;搜集和整理数据;应用图表来表示数据;分析数据;作出推测,并用一种别人信服的方式交流信息。同时体会对数据的收集、处理会获得某些新的信息。例如:组织一次班会活动,目的是增进同学之间的互相了解和交流。首先让学生们自己选题,希望了解哪些信息:“同学们每天怎么来上学?”;“每个月都有多少同学过生日?”;“同学们喜欢读哪类图书?”;“同学们的爱好是什么?”;“我们最喜爱的运动”;“我们最喜爱的动物”然后学生们分组去调查收集数据,用表格归纳整理,并且制成各种统计图:如:从统计图可以知道,喜欢动物故事的同学最多,根据这个统计结果,班里可以组织一个动物研究会,办一个动物图片展览,到野生动物园去参观等。全班同学还可以把各种图表制成墙报、手抄报把自己的班级介绍给全校其他同学等。三、统计、概率与小学其它内容的联系例1上面各图中表示黑色区域的分数分别为;,小学生即使没有学习几何图形的概念也可以通过分数的意义知道2号黑色区域最容易投中,因为根据分数的意义它占总面积的比最大,为。例2从红球所占的比例来看,1号袋为; 2号袋为;3号袋为击,因此相比之下,1号袋最容易抽出红球。例3下面是用扇形统计图统计的资料对小学生来讲,扇形统计图的难点在于不同的圆心角所代表的部分的百分数表示及百分数表示的圆心角的度数,而对于上面图中有特殊圆心角时,可避开圆心角,用分数、百分数的意义得出喜欢英语课的,科学课的,数学课的;参加球类兴趣小组的有50;参加乐队的18。从上面的例子可以看出,统计与概率可以为发展和运用比、分数、百分数和小数这些概念提供背景。因此我们可以用建构的方式,建立这部分内容与小学其它知识的联系和建构有意义的认知结构,从而更深入、更灵活地学习。总之,在小学,统计与概率的教学既要具有科学性又要符合小学生的认知特点,同时,它还是解决问题的有力工具,它也是架起与其它内容之间的桥梁。和差问题已知两个数的和与差,求这两个数的应用题,叫做和差问题。一般关系式有:(和差)2较小数(和差)2较大数例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?(244)228214 乙数(244)220210 甲数答:甲数是10,乙数是14。差倍问题已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。基本关系式是:两数差倍数差较小数例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。原来两堆煤各有多少吨?分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多4052吨,由基本关系式列式是:(4052)(31)5(4010)25302515510(吨) 第一堆煤的重量10+4050(吨) 第二堆煤的重量答:第一堆煤有10吨,第二堆煤有50吨。还原问题已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。还原问题是逆解应用题。一般根据加、减法,乘、除法的互逆运算的关系。由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。例:仓库里有一些大米,第一天售出的重量比总数的一半少12吨。第二天售出的重量,比剩下的一半少12吨,结果还剩下19吨,这个仓库原来有大米多少吨?分析:如果第二天刚好售出剩下的一半,就应是1912吨。第一天售出以后,剩下的吨数是(1912)2吨。以下类推。列式:(1912)2122312-12262-122502100(吨)答:这个仓库原来有大米100吨。置换问题题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?分析:先假定买来的100张邮票全部是20分一张的,那么总值应是201002000(分),比原来的总值多20001880120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算201010(分),如此可以求出10分一张的有多少张。列式:(20001880)(2010)1201012(张)10分一张的张数1001288(张)20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。盈亏问题(盈不足问题)题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:当一次有余数,另一次不足时:每份数(余数不足数)两次每份数的差当两次都有余数时:总份数(较大余数较小数)两次每份数的差当两次都不足时:总份数(较大不足数较小不足数)两次每份数的差例1、解放军某部的一个班,参加植树造林活动。如果每人栽5棵树苗,还剩下14棵树苗;如果每人栽7棵,就差4棵树苗。求这个班有多少人?一共有多少棵树苗?分析:由条件可知,这道题属第一种情况。列式:(144)(75)182 9(人)5914451459(棵)或:79463459(棵)答:这个班有9人,一共有树苗59棵。年龄问题年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。常用的计算公式是:成倍时小的年龄大小年龄之差(倍数1)几年前的年龄小的现年成倍数时小的年龄几年后的年龄成倍时小的年龄小的现在年龄例1、父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?(5412)(41)42314(岁)儿子几年后的年龄14122(年)2年后答:2年后父亲的年龄是儿子的4倍。例2、父亲今年的年龄是54岁,儿子今年有12岁。几年前父亲的年龄是儿子年龄的7倍?(5412)(71)4267(岁)儿子几年前的年龄1275(年)5年前答:5年前父亲的年龄是儿子的7倍。例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。王刚父母亲今年的年龄各是多少岁?(14824)(31)300475(岁)父亲的年龄1487573(岁)母亲的年龄答:王刚的父亲今年75岁,母亲今年73岁。或:(1482)2150275(岁)75273(岁)鸡兔问题已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”。一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。常用的基本公式有:(总足数鸡足数总只数)每只鸡兔足数的差兔数(兔足数总只数总足数)每只鸡兔足数的差鸡数例:鸡兔同笼共有24只。有64条腿。求笼中的鸡和兔各有多少只?3k W UEw9I0R, F/|1V7YWd-r0Gb(e(o/X3QE&dL$Z0 凤凰博客h7IM?pJu7NVIG rf Y E0(64224)(42)(6448)(42)16 28(只)兔的只数24816(只)鸡的只数答:笼中的兔有8只,鸡有16只凤凰博客38Zp|S5|+U。牛吃草问题(船漏水问题)若干头牛在一片有限范围内的草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。(1510255)(105)(150125)(105)2555(头)可供5头牛吃一天。15010515050100(头)草地上原有的草可供100头牛吃一天100(105)100520(天)答:若供10头牛吃,可以吃20天。例2、一口井匀速往上涌水,用4部抽水机100分钟可以抽干;若用6部同样的抽水机则50分钟可以抽干。现在用7部同样的抽水机,多少分钟可以抽干这口井里的水?(1004506)(10050)(400300)(10050)1005024001002400200200200(72)200540(分)答:用7部同样的抽水机,40分钟可以抽干这口井里的水。公约数、公倍数问题运用最大公约数或最小公倍数解答应用题,叫做公约数、公倍数问题。例1:一块长方体木料,长25米,宽175米,厚075米。如果把这块木料锯成同样大小的正方体木块,不准有剩余,而且每块的体积尽可能的大,那么,正方体木块的棱长是多少?共锯了多少块?分析:25250厘米175175厘米07575厘米其中250、175、75的最大公约数是25,所以正方体的棱长是25厘米。(25025)(17525)(7525)1073210(块)答:正方体的棱长是25厘米,共锯了210块。例2、两啮合齿轮,一个有24个齿,另一个有40个齿,求某一对齿从第一次接触到第二次接触,每个齿轮至少要转多少周?分析:因为24和40的最小公倍数是120,也就是两个齿轮都转120个齿时,第一次接触的一对齿,刚好第二次接触。120245(周)120403(周)答:每个齿轮分别要转5周、3周。分数应用题指用分数计算来解答的应用题,叫做分数应用题,也叫分数问题。分数应用题一般分为三类:1求一个数是另一个数的几分之几。2求一个数的几分之几是多少。3已知一个数的几分之几是多少,求这个数。其中每一类别又分为二种,其一:一般分数应用题;其二:较复杂的分数应用题。例1:育才小学有学生1000人,其中三好学生250人。三好学生占全校学生的几分之几?答:三好学生占全校学生的。例2:一堆煤有180吨,运走了。走了多少吨?18080(吨)答:运走了80吨。例3:某农机厂去年生产农机1800台,今年计划比去年增加。今年计划生产多少台?1800(1)18002400(台)答:今年计划生产2400台。例4:修一条长2400米的公路,第一天修完全长的,第二天修完余下的。还剩下多少米?2400(1)(1)24001200(米)答:还剩下1200米。例5:一个学校有三好学生168人,占全校学生人数的。全校有学生多少人?168840(人)答:全校有学生840人。例6:甲库存粮120吨,比乙库的存粮少。乙库存粮多少吨?120120180(吨)答:乙库存粮180吨。例7:一堆煤,第一次运走全部的,第二次运走全部的,第二次比第一次少运8吨。这堆煤原有多少吨?8() 848(吨)答:这堆煤原有48吨。工程问题它是分数应用题的一个特例。是已知工作量、工作时间和工作效率,三个量中的两个求第三个量的问题。解答工程问题时,一般要把全部工程看作“1”,然后根据下面的数量关系进行解答:6q1U7in!S7x0凤凰博客tr IJ0OYWVP tAd)J.IH0&h|il)t&ZS6h&kC0nVg2v IdgI0工作效率工作时间工作量F5q/f,z5by0工作量工作时间工作效率凤凰博客q!q1Nc3E-na9Q$M工作量工作效率工作时间凤凰博客9FA*o d#7I!l例1:一项工程,甲队单独做需要18天,乙队单独做需要24天。如果两队合作8天后,余下的工程由甲队单独做,还要几天完成?N W5l,VjH|0凤凰博客+ZOR HhI凤凰博客hq$TU!bO$rEQ凤凰博客6Op/ZV2wc1()8,l!l9zIb&W01184(天)答:(略)。凤凰博客1Q0RO&%owG例2:一个水池,装有甲、乙两个进水管,一个出水管。单开甲管2小时可以注满;单开乙管3小时可以注满;单开出水管6小时可以放完。现在三管在池空时齐开,多少小时可以把水池注满?|5W.WuC3p0凤凰博客 SX9q7|f凤凰博客UO8_%F(u8Br6Xr3MHv)I0 1() 凤凰博客I ?b&W+CD11(小时)答:(略)凤凰博客o Sj4ON:2/a+N百分数应用题这类应用题与分数应用题的解答方式大致相同,仅求“率”时,表达方式不同,意义不同。例1某农科所进行发芽试验,种下250粒种子。发芽的有230粒。求发芽率。答:发芽率为92。1、长方形的周长=(长+宽)2 C=(a+b)22、正方形的周长=边长4 C=4a3、长方形的面积=长宽 S=ab4、正方形的面积=边长边长 S=a.a= a5、三角形的面积=底高2 S=ah26、平行四边形的面积=底高 S=ah7、梯形的面积=(上底+下底)高2 S=(ab)h28、直径=半径2 d=2r 半径=直径2 r= d29、圆的周长=圆周率直径=圆周率半径2 c=d =2r10、圆的面积=圆周率半径半径 =r11、长方体的表面积=(长宽+长高宽高)212、长方体的体积 =长宽高 V =abh13、正方体的表面积=棱长棱长6 S =6a14、正方体的体积=棱长棱长棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2r +2rh=2(d2) +2(d2)h=2(C2) +Ch17、圆柱的体积=底面积高 V=ShV=r h=(d2) h=(C2) h18、圆锥的体积=底面积高3V=Sh3=r h3=(d2) h3=(C2) h319、长方体(正方体、圆柱体)的体1、 每份数份数总数 总数每份数份数 总数份数每份数2、 1倍数倍数几倍数 几倍数1倍数倍数 几倍数倍数1倍数3、 速度时间路程 路程速度时间 路程时间速度4、 单价数量总价 总价单价数量 总价数量单价5、 工作效率工作时间工作总量 工作总量工作效率工作时间 工作总量工作时间工作效率6、 加数加数和 和一个加数另一个加数7、 被减数减数差 被减数差减数 差减数被减数8、 因数因数积 积一个因数另一个因数9、 被除数除数商 被除数商除数 商除数被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长 周长边长4 C=4a 面积=边长边长 S=aa2 、正方体 V:体积 a:棱长 表面积=棱长棱长6 S表=aa6 体积=棱长棱长棱长 V=aaa3 、长方形C周长 S面积 a边长周长=(长+宽)2C=2(a+b)面积=长宽S=ab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长宽+长高+宽高)2S=2(ab+ah+bh)(2)体积=长宽高V=abh5 三角形s面积 a底 h高面积=底高2s=ah2三角形高=面积 2底三角形底=面积 2高6 平行四边形s面积 a底 h高面积=底高s=ah7 梯形s面积 a上底 b下底 h高面积=(上底+下底)高2s=(a+b) h28 圆形S面积 C周长 d=直径 r=半径(1)周长=直径=2半径C=d=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论