已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
小中高 精品 教案 试卷3.2独立性检验的基本思想及其初步应用学习目标1.了解分类变量的意义.2.了解22列联表的意义.3.了解随机变量K2的意义.4.通过对典型案例分析,了解独立性检验的基本思想和方法知识点一分类变量及22列联表思考山东省教育厅大力推行素质教育,增加了高中生的课外活动时间,某校调查了学生的课外活动方式,结果整理成下表:体育文娱合计男生210230440女生60290350合计270520790如何判定“喜欢体育还是文娱与性别是否有联系”?答案可通过表格与图形进行直观分析,也可通过统计分析定量判断梳理(1)分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量(2)列联表定义:列出的两个分类变量的频数表,称为列联表22列联表一般地,假设有两个分类变量X和Y,它们的取值分别为x1,x2和y1,y2,其样本频数列联表(也称为22列联表)为下表.y1y2总计x1ababx2cdcd总计acbdabcd知识点二等高条形图1与表格相比,图形更能直观地反映出两个分类变量间是否相互影响,常用等高条形图展示列联表数据的频率特征2如果通过直接计算或等高条形图发现和相差很大,就判断两个分类变量之间有关系知识点三独立性检验1定义:利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验2K2,其中nabcd为样本容量3独立性检验的具体做法(1)根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界,然后查表确定临界值k0.(2)利用公式计算随机变量K2的观测值k.(3)如果kk0,就推断“X与Y有关系”,这种推断犯错误的概率不超过;否则,就认为在犯错误的概率不超过的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”1列联表中的数据是两个分类变量的频数()2事件A与B的独立性检验无关,即两个事件互不影响()3K2的大小是判断事件A与B是否相关的统计量()类型一等高条形图的应用例1为了解铅中毒病人与尿棕色素为阳性是否有关系,分别对病人组和对照组的尿液作尿棕色素定性检查,结果如下:组别阳性数阴性数总计铅中毒病人29736对照组92837总计383573试画出列联表的等高条形图,分析铅中毒病人和对照组的尿棕色素阳性数有无差别,铅中毒病人与尿棕色素为阳性是否有关系?考点定性分析的两类方法题点利用图形定性分析解等高条形图如图所示:其中两个浅色条的高分别代表铅中毒病人和对照组样本中尿棕色素为阳性的频率由图可以直观地看出铅中毒病人与对照组相比,尿棕色素为阳性的频率差异明显,因此铅中毒病人与尿棕色素为阳性有关系反思与感悟在等高条形图中,可以估计满足条件Xx1的个体中具有Yy1的个体所占的比例,也可以估计满足条件Xx2的个体中具有Yy1的个体所占的比例.两个比例的值相差越大,X与Y有关系成立的可能性就越大跟踪训练1网络对现代人的生活影响较大,尤其是对青少年,为了解网络对中学生学习成绩的影响,某地区教育主管部门从辖区初中生中随机抽取了1 000人调查,发现其中经常上网的有200人,这200人中有80人期末考试不及格,而另外800人中有120人不及格利用图形判断学生经常上网与学习成绩有关吗?考点定性分析的两类方法题点利用图形定性分析解根据题目所给的数据得到如下22列联表:经常上网不经常上网总计不及格80120200及格120680800总计2008001 000得出等高条形图如图所示:比较图中阴影部分的高可以发现经常上网不及格的频率明显高于经常上网及格的频率,因此可以认为经常上网与学习成绩有关类型二独立性检验例2某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生602080北方学生101020合计7030100根据表中数据,问是否在犯错误的概率不超过0.05的前提下认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”考点独立性检验及其基本思想题点独立性检验的方法解将22列联表中的数据代入公式计算,得K2的观测值k4.762.因为4.7623.841,所以在犯错误的概率不超过0.05的前提下认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”反思与感悟(1)独立性检验的关注点在22列联表中,如果两个分类变量没有关系,则应满足adbc0,因此|adbc|越小,关系越弱;|adbc|越大,关系越强(2)独立性检验的具体做法根据实际问题的需要确定允许推断“两个分类变量有关系”犯错误的概率的上界,然后查表确定临界值k0.利用公式K2计算随机变量K2的观测值k.如果kk0,推断“X与Y有关系”这种推断犯错误的概率不超过;否则,就认为在犯错误的概率不超过的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够的证据支持结论“X与Y有关系”跟踪训练2某省进行高中新课程改革已经四年了,为了解教师对新课程教学模式的使用情况,某一教育机构对某学校的教师关于新课程教学模式的使用情况进行了问卷调查,共调查了50人,其中有老教师20人,青年教师30人老教师对新课程教学模式赞同的有10人,不赞同的有10人;青年教师对新课程教学模式赞同的有24人,不赞同的有6人(1)根据以上数据建立一个22列联表;(2)判断是否有99%的把握说明对新课程教学模式的赞同情况与教师年龄有关系考点独立性检验及其基本思想题点独立性检验的方法解(1)22列联表如下所示:赞同不赞同总计老教师101020青年教师24630总计341650(2)假设“对新课程教学模式的赞同情况与教师年龄无关”由公式得K24.9636.635,所以没有99%的把握认为对新课程教学模式的赞同情况与教师年龄有关类型三独立性检验的综合应用例3(2017全国改编)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关.箱产量50 kg箱产量50 kg旧养殖法新养殖法附:P(K2k0)0.0500.0100.001k03.8416.63510.828K2.考点独立性检验思想的应用题点分类变量与统计、概率的综合性问题解(1)记B表示事件“旧养殖法的箱产量低于50 kg”,C表示事件“新养殖法的箱产量不低于50 kg”,由P(A)P(BC)P(B)P(C),则旧养殖法的箱产量低于50 kg的频率为(0.0120.0140.0240.0340.040)50.62,故P(B)的估计值为0.62,新养殖法的箱产量不低于50 kg的频率为(0.0680.0460.0100.008)50.66,故P(C)的估计值为0.66,则事件A的概率估计值为P(A)P(B)P(C)0.620.660.409 2,A发生的概率为0.409 2.(2)根据箱产量的频率分布直方图得到列联表:箱产量6.635,故有99%的把握认为箱产量与养殖方法有关反思与感悟两个分类变量相关关系的判断(1)等高条形图法:在等高条形图中,可以估计满足条件Xx1的个体中具有Yy1的个体所占的比例,也可以估计满足条件Xx2的个体中具有Yy1的个体所占的比例.两个比例的值相差越大,X与Y有关系成立的可能性就越大(2)观测值法:通过22列联表,先计算K2的观测值k,然后借助k的含义判断“两个分类变量有关系”这一结论成立的可信程度跟踪训练3为了解某班学生喜爱打篮球是否与性别有关,对本班48人进行了问卷调查得到了如下的22列联表:喜爱打篮球不喜爱打篮球合计男生6女生10合计48已知在全班48人中随机抽取1人,抽到喜爱打篮球的学生的概率为.(1)请将上面的22列联表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.05的前提下认为喜爱打篮球与性别有关?说明你的理由;(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为X,求X的分布列与均值考点独立性检验思想的应用题点分类变量与统计、概率的综合性问题解(1)列联表补充如下:喜爱打篮球不喜爱打篮球合计男生22628女生101020合计321648(2)由K24.286.因为4.2863.841,所以,能在犯错误的概率不超过0.05的前提下认为喜爱打篮球与性别有关(3)喜爱打篮球的女生人数X的可能取值为0,1,2.其概率分别为P(X0),P(X1),P(X2),故X的分布列为X012PX的均值为E(X)01.1某机构调查中学生的近视情况,了解到某校150名男生中有80名近视,140名女生中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A平均数 B方差 C回归分析 D独立性检验考点独立性检验及其基本思想题点独立性检验的思想答案D2对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是()Ak越大,“X与Y有关系”的可信程度越小Bk越小,“X与Y有关系”的可信程度越小Ck越接近于0,“X与Y没有关系”的可信程度越小Dk越大,“X与Y没有关系”的可信程度越大考点独立性检验及其基本思想题点独立性检验的思想答案B解析k越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大,k越小,“X与Y有关系”的可信程度越小3用等高条形图粗略估计两个分类变量是否相关,观察下列各图,其中两个分类变量关系最强的是()考点定性分析的两类方法题点利用图形定性分析答案D解析由等高条形图易知,D选项两个分类变量关系最强4若在研究吸烟与患肺癌的关系中,通过收集、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是()A100个吸烟者中至少有99人患有肺癌B1个人吸烟,那么这个人有99%的概率患有肺癌C在100个吸烟者中一定有患肺癌的人D在100个吸烟者中可能一个患肺癌的人也没有考点独立性检验及其基本思想题点独立性检验的方法答案D解析独立性检验的结论是一个统计量,统计的结果只是说明事件发生的可能性的大小,具体到一个个体,则不一定发生5高中流行这样一句话“文科就怕数学不好,理科就怕英语不好”下表是一次针对高三文科学生的调查所得的数据.总成绩好总成绩不好总计数学成绩好478a490数学成绩不好39924423总计bc913(1)计算a,b,c的值;(2)文科学生总成绩不好与数学成绩不好有关系吗?考点独立性检验及其基本思想题点独立性检验的方法解(1)由478a490,得a12.由a24c,得c122436.由bc913,得b91336877.(2)计算随机变量K2的观测值k6.2335.024,因为P(K25.024)0.025,所以在犯错误的概率不超过0.025的前提下,认为文科学生总成绩不好与数学成绩不好有关系1列联表与等高条形图列联表由两个分类变量之间频率大小差异说明这两个变量之间是否有相关关系,而利用等高条形图能形象直观地反映它们之间的差异,进而推断它们之间是否具有相关关系2对独立性检验思想的理解独立性检验的基本思想类似于数学中的反证法先假设“两个分类变量没有关系”成立,计算随机变量K2的值,如果K2的值很大,说明假设不合理K2越大,两个分类变量有关系的可能性越大一、选择题1下面是一个22列联表:y1y2总计x1a2173x282533总计b46106则表中a,b的值分别为()A94,96 B52,50C52,60 D54,52考点分类变量与列联表题点求列联表中的数据答案C2为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用22列联表进行独立性检验,经计算得K27.01,则认为“喜欢乡村音乐与性别有关系”的把握约为()A0.1% B1% C99% D99.9%考点独立性检验及其基本思想题点独立性检验的方法答案C解析易知K27.016.635,对照临界值表知,有99%的把握认为喜欢乡村音乐与性别有关系3在独立性检验中,两个分类变量“X与Y有关系”的可信度为99%,则随机变量K2的观测值k的取值范围是()A3.841,5.024) B5.024,6.635)C6.635,7.879) D7.879,10.828)考点分类变量与列联表题点求观测值答案C4高二第二学期期中考试,按照甲、乙两个班学生的数学成绩优秀和及格统计人数后,得到如下列联表:优秀及格总计甲班113445乙班83745总计197190则随机变量K2的观测值约为()A0.600 B0.828C2.712 D6.004考点分类变量与列联表题点求观测值答案A解析根据列联表中的数据,可得随机变量K2的观测值k0.600.故选A.5在22列联表中,两个比值相差越大,两个分类变量有关系的可能性就越大,那么这两个比值为()A.与 B.与C.与 D.与考点定性分析的两类方法题点利用图形定性分析答案A解析由题意,因为|adbc|的值越大,两个分类变量有关系的可能性就越大,故选A.6有两个分类变量X,Y,其列联表如下所示,Y1Y2X1a20aX215a30a其中a,15a均为大于5的整数,若在犯错误的概率不超过0.05的前提下认为X,Y有关,则a的值为()A8 B9C8或9 D6或8考点分类变量与列联表题点求列联表中的数据答案C解析根据公式,得K2的观测值k3.841,根据a5且15a5,aZ,求得当a8或9时满足题意7某班主任对全班50名学生进行了作业量的调查,数据如下表:认为作业量大认为作业量不大合计男生18927女生81523合计262450则推断“学生的性别与认为作业量大有关”这种推断犯错误的概率不超过()A0.01 B0.025 C0.005 D0.001考点独立性检验及其基本思想题点独立性检验的方法答案B解析由公式得K2的观测值k5.0595.024.P(K25.024)0.025,犯错误的概率不超过0.025.二、填空题8在吸烟与患肺病是否相关的判断中,有下面的说法:若K2的观测值k6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误其中说法正确的是_考点独立性检验及其基本思想题点独立性检验的思想答案解析K2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法不正确;说法中对“确定容许推断犯错误概率的上界”理解错误;说法正确9某高校“统计初步”课程的教师随机调查了选该课的一些学生的情况,具体数据如下表:专业性别非统计专业统计专业男1310女720为了判断主修统计专业是否与性别有关系,根据表中的数据,得到K24.844,因为K23.841,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性最大为_考点独立性检验及其基本思想题点独立性检验的方法答案5%解析因为K23.841,所以有95%的把握认为主修统计专业与性别有关,出错的可能性为5%.102014年世界杯期间,某一电视台对年龄高于40岁和不高于40岁的人是否喜欢西班牙队进行调查,对高于40岁的调查了50人,不高于40岁的调查了50人,所得数据制成如下列联表:不喜欢西班牙队喜欢西班牙队总计高于40岁pq50不高于40岁153550总计ab100若工作人员从所有统计结果中任取一个,取到喜欢西班牙队的人的概率为,则有超过_的把握认为年龄与西班牙队的被喜欢程度有关附:K2.P(K2k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828考点独立性检验及其基本思想题点独立性检验的方法答案95%解析设“从所有人中任意抽取一个,取到喜欢西班牙队的人”为事件A,由已知得P(A),所以q25,p25,a40,b60.K24.1673.841.故有超过95%的把握认为年龄与西班牙队的被喜欢程度有关三、解答题11研究人员选取170名青年男女大学生的样本,对他们进行一种心理测验发现有60名女生对该心理测验中的最后一个题目的反应是:作肯定的有22名,否定的有38名;男生110名在相同的项目上作肯定的有22名,否定的有88名问:性别与态度之间是否存在某种关系?分别用条形图和独立性检验的方法判断考点定性分析的两类方法题点利用图形定性分析解建立性别与态度的22列联表如下:肯定否定总计男生2288110女生223860总计44126170根据列联表中所给的数据,可求出男生中作肯定态度的频率为0.2,女生中作肯定态度的频率为0.37.作等高条形图如图,其中两个深色条形的高分别表示男生和女生中作肯定态度的频率,比较图中深色条形的高可以发现,女生中作肯定态度的频率明显高于男生中作肯定态度的频率,因此可以认为性别与态度有关系根据列联表中的数据得到K2的观测值k5.6225.024.因此,在犯错误的概率不超过0.025的前提下认为性别和态度有关系12某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表所示:喜欢不喜欢合计大于40岁2052520岁至40岁102030合计302555(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6名市民作为一个样本,从中任选2人,求恰有1位大于40岁的市民和1位20岁至40岁的市民的概率考点独立性检验思想的应用题点分类变量与统计、概率的综合性问题解(1)由公式K2得,观测值k11.9787.879,所以有99.5%以上的把握认为喜欢“人文景观”景点与年龄有关(2)由题意知抽取的6人中大于40岁的市民有4个,20岁至40岁的市民有2个,分别记为B1,B2,B3,B4,C1,C2,从中任选2人的基本事件有(B1,B2),(B1,B3),(B1,B4),(B1,C1),(B1,C2),(B2,B3),(B2,B4),(B2,C1),(B2,C2),(B3,B4),(B3,C1),(B3,C2),(B4,C1),(B4,C2),(C1,C2),共15个,其中恰有1位大于40岁的市民和1 位20岁至40岁的市民的事件有(B1,C1),(B1,C2),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(B4,C1),(B4,C2),共8个,所以恰有1位大于40岁的市民和1位20岁至40岁的市民的概率为.四、探究与拓展13假设有两个分类变量X和Y,它们的值域分别为x1,x2和y1,y2,其中22列联表为:y1y2总计x1ababx2cdcd总计acbdabcd对同一样本,以下数据能说明X与Y有关的可能性最大的一组是()Aa5,b4,c3,d2 Ba5,b3,c4,d2Ca2,b3,c4,d5 Da3,b2,c4,d5考点分类变量与列联表题点求列联表中的数据答案D解析对于同一样本,|adbc|越小,说明x与y相关性越弱,而|adbc|越大,说明x与y相关性越强,通过计算知,对于A,B,C都有|adbc|1012|2.对于选项D,有|adbc|158|7,显然72.142017年世界第一届轮滑运动会(the first edtion of Roller Games)在南京举行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者调查发现,男、女志愿者分别有10人和6人喜爱轮滑,其余不喜爱得到2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拆房务工合同范例
- 快递五险合同范例
- 石马中学申请语言文字规范化示范学校自评报告
- 2024年泸州客运考试题库
- 2024年南京客运考试应用能力试题及答案解析
- 青岛市第十五届职业技能大赛技术文件-育婴员
- 城市铁路建设管理办法
- 美容院修缮工程协议
- 租赁公司驾驶员招聘协议
- 建筑工程挖机租赁合同协议书
- 核心素养下的道德与法治课教学课件
- 中学生良好学习习惯养成教育课件
- 项目六-跨境电商营销推广课件
- 汉语普通话前后鼻音区分考试题库(200题版)
- 小学英语四年级家长会ppt
- 四年级上册语文老师家长会
- 2022幼儿园感恩节活动主题班会PPT感恩节课件
- 微波通信原理-课件
- 12-14mm带压开孔器操作说明书
- 胸水、腹水、脑脊液常规及生化检查课件
- 肾综合征出血热培训课件1
评论
0/150
提交评论