已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
职业教育论文-高职院校数学建模活动的探索与实践摘要:依据开展数学建模活动的实践经验,阐述了高职院校开展数学建模活动的重要意义,针对高职院校数学建模竞赛的组织与培训介绍了自己的做法,提出了一些建议和看法,并对以数学建模为切入点推动高职数学教学改革进行了探索。关键词:高职院校;数学建模;教学改革从1983年清华大学率先在应用数学系开设数学模型课及1992年举办首届数学建模竞赛至今,数学建模活动已经在全国各高校,特别是在本科院校中得到了蓬勃发展,不仅培养了一大批既富有创新观念,又具有实践能力的优秀本科生,也极大地推动了本科院校的教学改革。然而,数学建模在高职院校只是刚刚起步,有许多问题尚需在实践中进一步研究解决。自1999年设立大专组竞赛以来,虽然参赛的高职院校大幅增加,且该项赛事在相当一批高职学院中得到了很好的发展,但总体比例仍然偏低。同时,我国高职院校大多由中专学校升格而成,对数学建模作用的认识不深,对数学建模活动的开展、数学建模竞赛的组织等都缺乏经验,甚至存在一定的盲目性。作为我院数学建模的主教练,笔者根据自己近几年带队参赛的成功经验,对高职学院开展数学建模活动进行探索,并提出自己的一些建议和看法。高职院校开展数学建模活动的重要意义实践证明,数学建模对于提高学生运用数学和计算机技术解决实际问题的能力,培养创造能力与实践能力,培养团结合作精神,全面提高学生的素质具有非常积极的意义,同时,也对教学改革起到了重要的促进作用。数学建模活动已成为全国大学生参加人数最多、活动规模最大的课外科技活动。这项竞赛能够大规模健康地发展,并且具有强大的生命力,说明其顺应了时代发展的潮流,符合培养高质量、高素质人才的需要以及高等教育改革的要求。(一)开展数学建模活动是高职院校培养应用型人才的需要数学建模活动重在实践与应用。数学建模竞赛的题目是从工程技术、管理科学中的实际问题中提炼出来的,其内容涵盖了工业、农业、工程技术、管理科学、社会科学等方方面面。从问题分析到模型建立、从模型求解到结果分析、从模型评价到应用前景展望,既没有固定的模式可循,也没有现成的方法可套用。参赛学生必须像完成一个科研课题一样,经历问题分析、收集资料、调查研究、筛选研究方法、建立模型、利用计算机及数学软件求解、完成论文的系统过程。不仅可以培养学生运用数学知识综合分析和解决实际问题的能力,同时,可以充分模拟学生毕业后参加实际工作的情况,是一次将所学理论应用于实际的“亚实践”锻炼。数学建模对于高职院校培养创新型应用人才具有深远意义。(二)开展数学建模活动是提高高职学生综合素质的需要数学建模竞赛和教学对提高学生的综合素质具有重要作用,是对学生能力和素质的全面培养,既丰富、活跃了学生的课外活动,也为优秀学生脱颖而出创造了条件。通过总结15年来参赛学生、指导教师和有关教育行政领导的经验,发现至少有以下几点值得肯定:一是学生应用数学进行分析、推理、计算的能力,特别是双向翻译的能力大大提高;二是学生应用计算机、数学软件以及因特网的能力大大提高;三是培养了学生的应变能力(独立查找文献、在短时间内消化、阅读、应用的能力);四是培养和发展了学生的创造力、想象力、联想力和洞察力;五是培养了学生组织、管理、协调、合作能力;六是培养了学生的交流、表达和写作能力;七是培养了竞赛意识、坚强的意志力;八是培养了学生自律、“慎独”的优秀品质;九是培养了正确的数学观。(三)开展数学建模活动是高职数学教学改革的需要高职数学教育本身面临着很多重大改革课题,其中一个问题就是教学内容与教学时数的矛盾问题,即如何在较少时间里让学生掌握必需而够用的数学知识;另一个问题就是教学内容与实用性有机结合的问题,即如何让学生将所学的数学知识应用于实际。同时,高职教育的培养目标是为生产、建设、管理和服务第一线培养实用型人才,根据这个目标,高职数学课程的教学改革应以突出数学的应用性为主要突破点。高职数学课程的一个重要任务就是培养学生用数学原理和方法解决实际问题的能力。在这些问题上,数学建模是一个可以选择的解决途径,是一个突破点,抓住了这个突破点,可以牵一发而动全身,进而推动高职数学课程教学改革。CUMCM每年在竞赛中专设C题和D题供高职高专院校学生选做,目的也在于此。数学建模活动的意义在于:(1)推动教学内容的改革。通过数学建模活动,将数学建模的思想和方法融入高等数学课程中,打破了原有高职数学课程只重视理论、忽视应用的教学内容安排。(2)推动教学方法的改革。数学建模问题具有开放性,一般不具有唯一的答案。在数学建模活动中,需要运用讨论式的教学方法,让学生参与到教学环节中,发挥学生的主体作用。(3)推动教学手段的改革。数学建模的过程,需要运用计算机技术解决实际问题,这就势必要对传统教学手段进行改革,特别是推动了数学实验课程在高职院校的发展。高职院校数学建模竞赛的组织与培训CUMCM在本科院校已经开展了15个年头,本科院校对数学建模竞赛的组织与培训工作有了有效的模式和成功经验。高职高专院校由于参加CUMCM时间较短,各方面的工作还处在摸索当中。同时,由于高职学生的基本功较差,数学课课时较少,使得高职院校数学建模竞赛的组织与培训也有别于普通本科院校。下面结合我院的成功经验,从三个方面介绍我院在数学建模培训与组织中的一些做法、体会和收获:(一)认识到位、重视到位、宣传到位认识到位主要是指对数学建模的意义和重要性的认识到位,尤其是领导的认识到位。数学建模竞赛涉及面广,不只是一种竞赛形式。通过数学建模竞赛不仅可以检测出一个学校学生的综合能力、综合素质和创新能力,也可检测出一个学校的综合办学能力和在办学过程中存在的问题。基于此,数学建模活动的开展得到了教育部的高度重视,将其作为衡量高校教学质量、人才培养水平、反映学生综合素质的重要标准。这也是国内、国际数学建模竞赛日益红火的重要原因。不仅要对数学建模竞赛认识到位,还要重视到位,尤其是学校领导的重视。数学建模竞赛的培训和组织工作是一项系统工程,需要投入大量人力、物力、财力,涉及各个部门,需要学校领导的支持、协调和重视。初次接触数学建模的学生对它的认识比较肤浅、模糊,所以,需要宣传到位。主要可以从以下几个方面入手:(1)高数任课教师在教学过程中介绍数模活动;(2)通过校报、广播、墙报等媒介宣传数模活动;(3)举办数学建模普及讲座;(4)组编数学建模宣传册子,介绍数学建模知识,刊登参赛学生体会;(5)组建数学建模协会,充分发挥学生社团作用。实践证明,这种立体化的宣传方式,可以吸引众多优秀学生参加数学建模,为数学建模活动的开展打下良好基础。(二)数学建模培训高职院校学生数学基础薄弱,绝大部分学生从没接触过数学建模知识,并且由于学制的原因,使得大部分参加培训的学生为大一新生,因此,需要对他们进行系统化培训。针对这些特点,吸取本科院校的经验,我们合理地制定了培训计划,并分阶段实施:第一阶段(上半年)为初级培训阶段。这一阶段主要在周末进行,内容包括开设有关数学应用专题讲座,初步树立学生的数学应用意识,使其基本懂得如何利用数学。针对基础差的学生,还应补充数学基础知识,主要是线性代数和概率论知识。据统计,从数模竞赛开赛至今,70的赛题为优化类或者需要运用优化理论的题目,所以,这一阶段的另一个重要培训内容就是优化建模与数学规划理论。第二阶段(暑期)为暑期集训阶段。数学建模涉及众多数学分支和多种建模方法。这一阶段我们采用专题化的培训方法,把培训内容分为若干有机联系而又相对独立的专题,按需施教,并在每一个专题培训后安排与其相关的建模问题,学用结合,使学生快速掌握建模知识和建模方法。这一阶段的具体安排情况见下表:第三阶段为模拟实战与案例分析阶段。这一阶段主要选择历年真题对学生进行实战模拟,完全按照竞赛的实际要求,令学生在三天内交出论文。其目的是使学生在教练的论文点评与案例分析指导下,不断发现和改正存在的问题,全面提高建模水平,掌握应赛的必要技巧。除此之外,我们还强调如下几个方面:(1)加强学生对竞赛中各个环节的熟悉程度;(2)加强学生的团队精神和沟通能力、队员之间配合的默契程度;(3)加强学生对论文细节部分的处理能力;(4)加强对薄弱环节的训练。(三)数学建模组赛数学建模的组赛也是一项系统的工作,涉及方方面面和各个部门。报名与队员选拔数学建模需要长期积累,因此,应尽早面向全校学生开展报名工作。报名工作一般安排在每学年的第二学期初进行,报名以学生自愿为主,数学任课教师推荐为辅,要求报名的学生具有较好的数学基础,有自我提高的要求,有较好的纪律性等。在学生自愿报名后,教练组要根据学生在校表现、高数课程的学习情况等,确定参加数学建模培训的学员,以降低培训中学员的流失率,选拔优秀学员。数学建模参赛队员的选拔直接关系到学校的参赛成绩,故选拔工作应该做到程序化,根据培训内容分多次进行。我校的做法是:在报名初期做一次初步筛选,入选的学生进入数学建模第一阶段的初级培训。第一阶段培训结束后,根据学员数学规划课程的成绩,选拔进入暑期集训的学员。暑期集训后,根据其建模能力和综合素质,选拔进入第三阶段培训的学员。最后,在第三阶段中期,根据学生模拟实战的表现情况最终确定参赛队员。后勤保障培训期间,指导教师和培训学员都必须全身心投入其中;竞赛期间,学生除了吃饭以及少量的休息时间外,要把所有的精力全部放到建模上。这就要求有关部门有坚强的后勤保障,让教师和学生没有后顾之忧。在后勤保障方面,我校的做法是:由基础部负责具体实施,各相关部门大力配合,例如图书馆为参赛队员借书提供“绿色通道”,信息系提供专门机房供活动使用,宿管办为集训学生统一安排住宿等。为保证竞赛活动顺利进行,学院每年拨出专款为竞赛购置必要的设备及所需教材、资料等,为数学建模竞赛活动提供可靠的经费保证。竞赛期间,学院统一安排食宿,为每支参赛队伍配备三台计算机和打印机等。实践证明,我院取得的优异成绩与领导的重视、各部门的支持是分不开的。以数学建模为切入点推动高职数学教学改革(一)以数学建模为切入点推动高职数学教学内容和教学方法的改革目前,高职数学的教学内容基本沿袭了经典数学的三大块:微积分、线性代数、概率论与数理统计。这些内容都是单纯的数学理论,缺乏与实际问题的结合,并且游离于专业课之外,不仅不能引起学生的学习兴趣,而且也是专业系部压缩数学课时的因素之一。教师的教学方法也只是注重数学知识的灌输,教师讲解、教师设问、教师给出标准答案,只管教不管懂,这种常规的“填鸭”式教学方法很难调动学生学习数学的热情。高职教育是培养高等应用型技术人才的教育。因此,高职数学的教学内容应充分体现“以应用为目的,以必需、够用为度”的原则,并将其作为专业课程的基础,强调其应用性以及解决实际问题的自觉性。一方面可以进一步扩大数学建模的受益面,有条件的情况下可以开设数学建模与数学实验课程,系统介绍数学建模的思想方法以及数学软件的使用方法;另一方面可以在高职数学教学中融入数学建模思想,将一些实际问题引入教学内容,利用一定的课时讲解浅易的数学建模,以增强数学内容的应用性、实践性、趣味性。在教学方法上,应注重理论联系实际,注重将数学的应用贯穿于教学始终,提倡“启发式”、“互动式”的教学模式,采用多媒体、数学实验等多种形式。(二)以数学建模为切入点推动高职数学教学手段和教学工具的改革随着现代科学技术的飞速发展,数学的应用领域日益广泛。数学建模的赛题都是一些经过适当简化加工的实际问题,这些问题为数学知识的应用提供了很好的实例。这些实例能使学生认识到数学如何有用,进而深入了解数学应用的方法和技巧。在数学建模中,为了求得模型的解,必须使用计算机和相关数学软件,数学应用与计算机已紧密结合。传统的教学手段一支粉笔、一块黑板,已不适应数学的发展和应用,计算机进入数学教学势在必行。首先,可以在数学教学手段上引入多媒体教学,提高学生学习数学的兴趣;其次,在教学工具上引入数学软件求解数学问题,采用数学实验课的形式,促进数学与计算机的结合。两点思考目前,高职院校只有少数人参与数学建模活动,而且大部分高职院校只是为了竞赛而开展这项活动。对于如何扩大受益面的问题,本专科院校做了一些有益探索,比如开设数学实验课程或数学建模课程,但对于学制较短、职业性较强的高职院校来说,能否借鉴他们的经验开设选修课,如何开设并安排数学建模的教学内容等,仍是有待解决的课题。数学建模提供的教学、培训模式和竞赛方式,在成绩较好的学生中取得了良好效果,但对于基础较差的学生却是一项高
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国换向手动油泵数据监测研究报告
- 2024版购销简单的合同范本
- 2025年度建筑照明材料采购合同范本3篇
- 杭州公司合作合同范本
- 2024酒店劳动合同模板
- 2025年度GRC构件生产与装配安全责任合同3篇
- 影视作品海外发行与推广2025年度合同2篇
- 二零二五年度跨区域LNG管道运输及仓储服务合同3篇
- 2025年度电机维修智能化改造升级合同3篇
- 2025年度电子元器件专用纸箱采购与仓储管理合同3篇
- TD/T 1060-2021 自然资源分等定级通则(正式版)
- 人教版二年级下册口算题大全1000道可打印带答案
- 《创伤失血性休克中国急诊专家共识(2023)》解读
- 仓库智能化建设方案
- 海外市场开拓计划
- 2024年度国家社会科学基金项目课题指南
- 供应链组织架构与职能设置
- 幼儿数学益智图形连线题100题(含完整答案)
- 2024年九省联考新高考 数学试卷(含答案解析)
- 红色历史研学旅行课程设计
- 如何避免护理患者投诉
评论
0/150
提交评论