已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3.1 拉格朗日中值定理,定理3.3 (拉格朗日中值定理),(1) 在闭区间a, b上连续;,(2) 在开区间(a, b)内可导;,使得,3.3 拉格朗日中值定理及其应用,若函数 f (x) 满足:,几何解释:,分析:,化为罗尔定理的结论形式,在曲线弧AB上至少 有一点C, 在该点处的切 线平行于弦AB.,证 作辅助函数,拉格朗日中值公式,即,或,如缺少定理两个条件的任一个, 结论可能不成立 .,(1)类似地定理的条件是充分的, 且 点不唯一.,(2) 定理的结论有几种等价写法:,5,推论3.3,有限增量公式,证,不妨设,例1 证明当,证,而,故,例2 证明,证,令,故,证,命题得证.,例3 证明当,推论3.4,单调递增;,单调递减.,3.3.2 函数的单调性,在(a, b)内可导.,证 (1),由拉格朗日定理,在a, b上,在a, b上,解,例4 讨论函数 的单调性.,定义域为,注1: 推论3.4对于开、闭、有限或无穷区间都正确.,注2: 区间内个别点导数为零,不影响区间的单调性.,例如,函数的单调区间求法:,若函数在其定义域的某个区间内是单调的,然后判定区间内导数,的符号.,的分界点,则该区间称为函数的单调区间.,导数等于零的点和不可导点,可能是单调区间,解,定义域为,导数不存在.,例5 讨论函数 的单调性.,解,定义域为,例6 讨论函数 的单调性.,导数不存在;,由零点定理:,例7 讨论方程 在 内的实根.,解,原方程在 内至少有一实根.,综上所述, 原方程在 内有且仅有一个实根.,因此, 原方程在 内至多有一实根.,作业 P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《电脑棋手》课件
- 《远山如黛》少儿美术教育绘画课件创意教程教案
- 课程分享 课件
- 西南林业大学《比较文学概论》2021-2022学年第一学期期末试卷
- 西京学院《网络数据库》2021-2022学年期末试卷
- 西京学院《建筑设备》2021-2022学年第一学期期末试卷
- 2024年教师系列中高级职称评审有关政策解读附件10
- 西京学院《国际结算与贸易融资》2022-2023学年第一学期期末试卷
- 西京学院《单片机原理及应用》2022-2023学年期末试卷
- 西华师范大学《中小学综合实践活动》2023-2024学年第一学期期末试卷
- 石材保温一体板计算书分解
- 神经源性膀胱诊疗指南解读课件
- 施工作业单位安全培训教育试题(含答案)
- 企业经营状况问卷调查表
- 四年级下册书法说课稿-学习与运用-苏少版
- Unit+7+Careers+Lesson+1+EQ:IQ+课件+-2023-2024学年高中英语北师大版2019+选择性必修第三册
- 沙眼衣原体感染
- 抢救车药物说明书汇编
- 《C语言程序设计》课程思政教学案例(一等奖)
- 三年级下册英语说课稿-Unit 3 What colour is this balloon?湘少版(三起)
- 锅炉供货合同(锅炉设备公司 蒸汽发生器供货合同)
评论
0/150
提交评论