已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四节归纳与类比考纲传真1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用.2.了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单的演绎推理1归纳推理(1)定义:根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性的推理方式(2)特点:是由部分到整体,由个别到一般的推理利用归纳推理得出的结论不一定是正确的2类比推理(1)定义:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征的推理过程(2)特点:是两类事物特征之间的推理利用类比推理得出的结论不一定是正确的3合情推理(1)定义:是根据实验和实践的结果,个人的经验和直觉,已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式(2)归纳推理和类比推理是最常见的合情推理4演绎推理(1)定义:是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程(2)“三段论”是演绎推理的一般模式,包括:大前提已知的一般原理;小前提所研究的特殊情况;结论根据一般原理,对特殊情况做出的判断1合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确2合情推理是发现结论的推理,演绎推理是证明结论的推理基础自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)归纳推理与类比推理都是由特殊到一般的推理()(2)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适()(3)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的()(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确()答案(1)(2)(3)(4)2由“半径为R的圆内接矩形中,正方形的面积最大”,推出“半径为R的球的内接长方体中,正方体的体积最大”是()A归纳推理B类比推理C演绎推理D以上都不是B类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)所以,由“半径为R的圆内接矩形中,正方形的面积最大”,推理出“半径为R的球的内接长方体中,正方体的体积最大”是类比推理,选B3(教材改编)已知数列an中,a11,n2时,anan12n1,依次计算a2,a3,a4后,猜想an的表达式是()Aan3n1Ban4n3Cann2Dan3n1Ca11,a24,a39,a416,猜想ann2.4“因为指数函数yax是增函数(大前提),而y是指数函数(小前提),所以函数y是增函数(结论)”,上面推理的错误在于()A大前提错误导致结论错误B小前提错误导致结论错误C推理形式错误导致结论错误D大前提和小前提错误导致结论错误A“指数函数yax是增函数”是本推理的大前提,它是错误的因为实数a的取值范围没有确定,所以导致结论是错误的5在平面上,若两个正三角形的边长的比为12,则它们的面积比为14.类似地,在空间中,若两个正四面体的棱长的比为12,则它们的体积比为_18在空间中,若两个正四面体的棱长的比为12,则它们的底面面积比为14,对应高之比为12,则它们的体积比为18.归纳推理考法1与数字有关的推理【例1】(1)给出以下数对序列:(1,1);(1,2)(2,1);(1,3)(2,2)(3,1);(1,4)(2,3)(3,2)(4,1);记第i行的第j个数对为aij,如a43(3,2),则anm()A(m,nm1)B(m1,nm)C(m1,nm1)D(m,nm)(2)观察下列式子:1,121,12321,1234321,由以上可推测出一个一般性结论:对于nN*,则12n21_.(1)A(2)n2(1)由已知可得,第i行第j列个数对aij(j,ij1),因此anm(m,nm1),故选A(2)由已知中112,121422,12321932,12343211642,归纳猜想可得123(n1)n(n1)321n2.考法2与式子有关的推理【例2】(1)(2019青岛模拟)观察下列等式:12;23;34;45;照此规律,_.(2)已知x(0,),观察下列各式:x2,x3,x4,归纳得xn1(nN*),则a_.(1)n(n1)(2)nn(1)根据所给等式知,等式右边是三个数的乘积,第一个数是,第二个数是左边最后一个数括号内角度值分子中的系数的一半,第三个数比第二个数大1,故所求结果为n(n1)(2)第一个式子是n1的情况,此时a111;第二个式子是n2的情况,此时a224;第三个式子是n3的情况,此时a3327,归纳可知ann.考法3与图形变化有关的推理【例3】(2019成都模拟)分形理论是当今世界十分风靡和活跃的新理论、新学科其中,把部分与整体以某种方式相似的形体称为分形分形是一种具有自相似特性的现象、图像或者物理过程标准的自相似分形是数学上的抽象,迭代生成无限精细的结构也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已,谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,按照如下规律依次在一个黑色三角形内去掉小三角形,则当n6时,该黑色三角形内一共去掉的小三角形的个数为()A81 B121C364D1 093C由题图可知,当n1时,该黑色三角形内一共去掉小三角形的个数为1;当n2时,该黑色三角形内一共去掉小三角形的个数为13;当n3时,该黑色三角形内一共去掉小三角形的个数为1332;据此归纳推理可知,当n6时,该黑色三角形内一共去掉小三角形的个数为1332333435364.故选C规律方法归纳推理的常见类型和一般步骤(1)常见的归纳推理分为数的归纳和形的归纳两类:数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;形的归纳主要包括图形数目归纳和图形变化规律归纳,合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性(2)归纳推理的一般步骤:通过观察个别情况发现某些相同性质;从相同性质中推出一个明确表述的一般性命题 (1)观察下列立方和:13,1323,132333,13233343,则归纳上述求和的一般公式132333n3_.(2)观察下列各式:1;1;1;照此规律,当nN*时,1_.(1)(2)(1)13112,13239(12)2,13233336(123)31234)2,由此规律可知13233343n3(123n)2.(2)观察所给不等式可知,第n个不等式的右边为.类比推理【例4】(1)(2019上饶模拟)二维空间中,圆的一维测度(周长)l2r,二维测度(面积)Sr2;三维空间中,球的二维测度(表面积)S4r2,三维测度(体积)Vr3.应用合情推理,若四维空间中,“超球”的三维测度V12r3,则其四维测度W_.(2)把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆半径r(其中a,b为直角三角形两直角边长)类比此方法可得三条侧棱长分别为a,b,c且两两垂直的三棱锥的外接球半径R_.(1)3r4(2)(1)二维空间中圆的一维测度(周长)l2r,二维测度(面积)Sr2;观察发现Sl,三维空间中球的二维测度(表面积)S4r2,三维测度(体积)Vr3,观察发现VS,四维空间中“超球”的三维测度V12r3,猜想其四维测度W,则WV12r3,W3r4,故答案为3r4.(2)把三棱锥补形为长方体,则长方体的对角线长即为三棱锥外接球的直径,则三棱锥外接球的半径R.规律方法解决类比推理问题的方法步骤(1)类比推理是由特殊到特殊的推理,其一般步骤为:找出两类事物之间的相似性或一致性;用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)(2)类比推理的关键是找到合适的类比对象平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论 (1)若数列an是等差数列,则数列bn也是等差数列,类比这一性质可知,若正项数列cn是等比数列,且dn也是等比数列,则dn的表达式应为()AdnBdnCdnDdn(2)在平面几何中,ABC的C的平分线CE分AB所成线段的比为.把这个结论类比到空间:在三棱锥ABCD中(如图所示),平面DEC平分二面角ACDB且与AB相交于E,则得到类比的结论是_(1)D(2)(1)法一:从商类比开方,从和类比到积,则算术平均数可以类比几何平均数,故dn的表达式为dn.法二:若an是等差数列,则a1a2anna1d,bna1dna1,即bn为等差数列;若cn是等比数列,则c1c2cncq12(n1)cq,dnc1q,即dn为等比数列,故选D(2)由平面中线段的比转化为空间中面积的比可得.演绎推理【例5】(1)(2017全国卷)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩看后甲对大家说:我还是不知道我的成绩根据以上信息,则()A乙可以知道四人的成绩B丁可以知道四人的成绩C乙、丁可以知道对方的成绩D乙、丁可以知道自己的成绩(1)D(1)由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩故选D(2)(2019福州模拟)数列an的前n项和记为Sn,已知a11,an1Sn(nN)证明:数列是等比数列;Sn14an.证明an1Sn1Sn,an1Sn,(n2)Snn(Sn1Sn),即nSn12(n1)Sn.2,(小前提)故是以2为公比,1为首项的等比数列(结论)(大前提是等比数列的定义,这里省略了)由可知4(n2),Sn14(n1)4Sn14an(n2),(小前提)又a23S13,S2a1a21344a1,(小前提)对于任意正整数n,都有Sn14an.(结论)(第(2)问的大前提是第(2)问的结论以及题中的已知条件)规律方法演绎推理的推证规则(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果大前提是显然的,则可以省略(2)演绎推理常考的推理形式还包括假言推理,即根据假言命题的逻辑性质进行的推理,解决这类问题常用方法充分条件假言推理,必要条件假言推理 如图,A,B,C三个开关控制着1,2,3,4号四盏灯若开关A控制着2,3,4号灯(即按一下开关A,2,3,4号灯亮,再按一下开关A,2,3,4号灯熄灭),同样,开关B控制着1,3,4号灯,开关C控制着1,2,4号灯开始时,四盏灯都亮着,那么下列说法正确的是()A只需要按开关A,C可以将四盏灯全部熄灭B只需要按开关B,C可以将四盏灯全部熄灭C按开关A,B,C可以将四盏灯全部熄灭D按开关A,B,C无法将四盏灯全部熄灭D根据题意,按开关A,2,3,4号灯熄灭,1号灯亮;按开关B,1,2号灯熄灭,3,4号灯亮;按开关C,则2,3,4号灯熄灭,1号灯亮选D1(2014全国卷)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市由此可判断乙去过的城市为_A由题意可推断:甲没去过B城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A,C城市,而乙“没去过C城市”,说明乙去过城市A,由此可知,乙去过的城市为A2(2016全国卷)有三张卡片,分别写有1和2,1和3,2和3.甲,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《智慧水利》2022-2023学年第一学期期末试卷
- 石河子大学《外国文学一》2021-2022学年第一学期期末试卷
- 石河子大学《化工仪表及自动化》2023-2024学年第一学期期末试卷
- 沈阳理工大学《展示空间设计》2022-2023学年第一学期期末试卷
- 沈阳理工大学《汽车理论》2023-2024学年第一学期期末试卷
- 沈阳理工大学《工控组态软件及应用》2022-2023学年第一学期期末试卷
- 管道保温工程合同协议书
- 光明租赁合同
- 合同编司法解释27解读
- 2024肉类采购合同样本
- 设计师要懂心理学课件
- 2022-家电品牌抖音快手运营、直播带货方案
- 山西省太原市2023届高三上学期期中数学试题
- 《这儿真美》优秀课件
- 《插花艺术》课程大作业
- 电视剧具体预算表
- DB15T 1276-2017 公路波纹钢管(板)桥涵工程质量检验评定标准
- hypertension高血压全英语版-课件
- 中药汤剂煎煮方法-课件
- 高中政治课程标准解读 汇报课件
- 心身疾病-课件
评论
0/150
提交评论