




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一次泵变流量水系统模拟和存在问题分析0 引言 空调冷冻水和冷却水经常在大流量、小温差下运行。根据日本的经验,vwv与vav并列,是空调中仅次于全热交换技术的节能措施。随着近年来电力电子技术的发展和变频器性价比的不断提高,交流电机变频调速技术的应用越来越广,一次泵变流量水系统的研究因此也得到了一定的重视1-3,但在研究中也存在这定性的结论多,定量的研究和计算办法少,可操作性较差的问题,因而影响了其在实际中的广泛使用。虽然冷冻水和冷却水的变流量运行对冷冻水泵和冷却水泵的节能运行有利,但变流量运行对于冷水机组的制冷性能可能有一定影响,制冷机的制冷效率(cop)可能有一定程度的下降。因此,要保证在冷水机组安全的前提条件下实现节能运行,就要求冷冻水流量和冷却水流量的变化有一定的限制,并满足某种匹配关系。由于目前生产厂家一般没有提供在不同的冷冻水出水温度和冷却水进水温度下,冷水机组制冷量、输入功率随冷冻水流量和冷却水流量变化的完整数据,因此关于一次泵变流量水系统的研究和设计受到了一定的影响;反过来,由于定量研究较少,也使得生产厂家没有积极性进行相关数据的测试。相信一次泵变流量水系统研究的进一步深入,对于提高冷水机组在部分负荷工况下及变流量情形下的能效比的研究和节能技术的推广将起到推动作用,从而形成空调水系统和制冷主机节能研究及其应用的良性互动。1 水侧变流量对冷水机组性能的影响在传统的空调水系统设计中,通过冷水机组的冷冻水和冷却水的流量基本保持不变。认为只有维持定流量,才能确保盘管的换热效果,流量减小时,在换热盘管表面可能会出现层流状态,降低换热效果;同时,流量过小时,蒸发器还会出现冻结的危险,当流速小于一定值时,水中若含有腐蚀性物质,会对盘管造成腐蚀。随着控制技术的发展,冷水机组的控制系统越来越先进。目前,不同类型的冷水机组均能实现冷量的自动调节。冷水机组能量调节功能的进步使得其水侧变流量设计成为可能,同时也凸显水泵应改变以不变应万变之策,而应以变应变。事实上,目前,多数冷水机组允许蒸发器流量在额定流量的50100以内变化。当蒸发器采用变流量运行时,其流量随着用户负荷的变化而变化,当用户负荷变小时,蒸发器的冷冻水流量变小,冷水机组的控制系统根据实际需冷量减小制冷剂流量,导致蒸发器盘管内制冷剂流速偏离了最佳流速值,冷水机组制冷系统的整体性能降低。衡量蒸发器变流量运行能否节能的标准不单是冷冻水泵运行时节能多少,而还应考虑蒸发器变流量运行造成冷水机组cop值下降而损失的能耗,再考虑变流量运行的负荷时间频度。由于控制技术的进步,控制系统可以保证压缩机始终在高效区运转,使得冷水机组蒸发器变流量时的性能不会下降很多。冷水机组蒸发器变流量对其制冷性能的影响程度与压缩机类型和制冷剂变流量的方式有关。文献3从热力学角度对此进行了分析,认为即使冷冻水流量减至60,冷水机组的cop的下降幅度也不超过10%。冷却水进出口温差变大时,虽然可以减小冷却水泵的运行费用,然而,为了保证冷凝器内的热交换,冷凝温度必然要高于冷却水的出口温度,并且冷凝温度与冷却水出口温度也要求有一低限。所以,要想加大冷却水的进出口温差,就必须提高冷却水出口温度(通常冷却水进口温度基本上是定值),这又将引起冷凝温度的增加,降低了冷水机组的cop值。与蒸发器变流量相比,冷凝器变流量运行对冷凝温度的影响较大,故导致冷水机组cop的变化较大,在给冷却水泵安装变频器时,应详细分析冷却水变流量对冷水机组性能的影响,确定方案的可行性。2 一次泵变流量系统节能模拟分析现将在部分负荷情况下变流量与定流量两种情形的系统(冷水机组和水泵)能耗进行比较,设定流量情形冷水机组和水泵的输入功率分别为和,变流量情形为和,对于冷水机组和水泵组成的系统而言,水泵变流量的节能率为 (1)变流量与定流量两种情形下的制冷量应相等(),因此,两种情形下冷水机组的输入功率与能效比(eer)的关系为 (2)因此,节能率为 (3)在部分负荷情况下,由于环境温度和工况的改变,冷水机组的输入功率与名义工况下的输入功率相差较大,且关系较为复杂;而eer虽有改变,但变化幅度较小,一般不超过15%4。设eer随部分负荷率(=q/q0)的变化为线性变化 (4)这里eer0为名义工况下的能效比,待定系数与部分负荷率和机型有关,如不考虑部分负荷情况下能效比的变化,则取。据能效比的定义,有, (5)由(4)、(5)式,可将部分负荷情况下冷水机组的输入功率用名义工况下的输入功率和部分负荷率来表示: (6)将(6)式代入(3)式,得 (7)对于闭式系统,水泵的等效率曲线与管路特性曲线重合,在一定的调速范围内,符合相似定律, (8)式中 和分别为定流量和变流量情形下的水流量。在名义工况下,有 (9)式中为名义工况下的温差,若采用等温差控制,则有 (10)因此, (11)将(8)、(11)式代入(7)式,得 (12)上式中最后一项是由于考虑了变流量运行对于冷水机组性能的影响而带来的。变流量情形下,冷水机组的能效比将比定流量情形下的能效比略有下降,目前这方面实验数据较少。为便于从理论上分析一次泵变流量情形下的节能与流量变化的关系,本文分别模拟以下两种情况:流量变为额定流量的60%时,冷水机组的eer变为定流量时eer的5%和10%,且eer与相对流量呈线性关系。这里为方便起见,不妨称之为“5%影响曲线”和“10%影响曲线”,见图1。对于“5%影响曲线”和“10%影响曲线”,分别有 (13) (14) 为便于分析一次泵变流量情形下的节能与部分负荷率和水泵相对主机的功耗的关系,这里,假设4 (15)图2 “5%影响曲线”下的节能率 图3 “5%影响曲线”下的节能率(相对功率为15%) (相对功率为25%)图4 “10%影响曲线”下的节能率 图5 “10%影响曲线”下的节能率(相对功率为15%) (相对功率为25%)图2和图3分别给出了水泵相对主机的电功率 为15%和25%情况下,“5%影响曲线”下的节能率与部分负荷率(流量变化)的关系;图4和图5则分别给出了对应于“10%影响曲线”下的节能率。从图中可以看出变流量对于冷水机组制冷性能的负面影响可能在相当程度上抵消水泵的调速节能,特别是当水泵相对主机的电功率比较小时。当水泵相对主机的电功率小于15%时,不考虑对主机影响的节能率计算(三次方定律)较考虑“5%影响曲线”时要高估50%以上,较考虑“10%影响曲线”时更要高估100%以上。即使对于水泵相对主机的电功率较大的情形,也应该正确评估变流量对主机制冷性能的影响,否则,有可能做出错误的判断。因此,研究和掌握冷水机组变流量下的制冷性能对于一次泵变流量系统的设计是至关重要的。3 工程中存在问题分析一些变频器生产厂家和自动化技术公司,在推动变频调速技术应用于空调水系统中,经常走在暖通空调专业人员的前面,大部分后期工程改造(变频调速系统的添置)往往由自动控制专业人员所主导。目前已有若干空调用户,特别是饭店,被推荐在空调冷冻水系统和冷却水系统中采用变频泵。但由于集中空调系统有着不同于一般流体输配系统的特点,在工程改造和节能核算中也存在一些问题。有的工程由于设计或施工方面的原因,水环路压力本来就不平衡。而在进行变频调速方案可行性论证时,有时仅仅关注供回水总管上的温差和系统的运行时间,而没有关心水环路压力是否平衡。水环路压力不平衡所造成的水力(热力)失调,在额定的大流量情况下,有的环路温差大,大多数环路温差小,供回水总管或分集水器上的温差还是较小,问题被掩盖了;但在小流量情形,就暴露了出来,结果在水泵调速运行时,最不利环路上的空调区域往往达不到要求,流量偏小(就是管理人员常常说的压力不够)。这就是许多空调变频调速装置形同虚设的一个主要原因。如何进行变频调速系统控制,对于运行的节能效果影响很大。目前,大多数情形采用的是压差控制和温差控制。压差控制反应快,传感器成本低,但也有缺点:恒压差控制,起不到节能的效果,如采用变压差控制,压差与流量的变化关系需试验确定,且一般起码要对最不利环路进行控制,布线较长,如是后期改造则要影响外观效果,不受业主欢迎;温差控制布线简单,只要将传感器布置在供回水总管或分集水器上即可,但其响应滞后,同样成本下,温度传感器精度较低,且在原来系统水环路压力不平衡的情况下,控制效果不好。两种方法各有利弊5。几乎所有节能核算办法均没有考虑到冷水机组水侧变流量运行对于其cop的影响,大多数核算办法只是简单地(也许有商业方面的考虑)将变频泵电流与工频泵电流进行比较,并计及变频泵地运行时间,而得出节能地效果(目前大多数变频调速采用“一变多定”方案),没有考虑到水泵机组在部分调速运行时,变频泵电流下降,而工频泵电流可能会有所上升。4 结论一次泵变流量水系统是空调节能设计的重要方法,但其设计或改造,需要事前对系统进行细致的测试和调研,或需要生产厂家提供冷水机组制冷量、输入功率随冷冻水流量和冷却水流量变化的完整数据。随着对于一次泵变流量水系统研究的进一步深入,可以推广plc(可编程控制器)与变频器组成一调速控制系统,充分考虑到冷水机组水侧变流量运行对于其制冷性能的影响,实现冷水机组和水泵的一体化控制北京远洋大厦暖通空调设计经验与教训工程概述远洋大厦座落于北京西长安街南侧、复兴门立交桥东南、首都黄金地带。大厦建筑面积约11万m2,建筑高度67.3m。地上共17层:包括首层商务、服务、辅助性商用,216层为办公、17层为俱乐部;地下共3层:包括餐厅、厨房、会议、物业管理办公、各类机房、汽车库、自行车库、仓库及人防等功能。标准层高3.70m,办公室内净高2.65m,空调面积约7.9万m2。大厦四立面约75%的面积为透明白玻璃点式幕墙,是一幢整体性、高档次、多功能、智能化综合写字楼。设计始于1995年,2000年8月建成并投入使用。空调系统根据大厦高起点的定位,空调系统按照高标准、高效、经济节能的原则进行设计。室内设计参数如下:场所干球温度()相对湿度(%)最小新风量m3/h.p夏季冬季夏季冬季总裁办公室23242122554085贵宾室、个人办公室24252122554050办公室、休息室、会议室2526212260403035商场、展示厅25261820654020宴会厅、餐厅、多功能厅24252122654025咖啡厅、酒吧、舞厅23242223604030壁球、高尔夫、健身房23241920604030桑拿、浴室25262425707030门厅、大堂、走廊27281618计算机中心21232022654030电话机房、消防安全控制中心25262122554030目前大厦冷冻机装机冷量为13185kw(3750 rt),空调总冷负荷为11866kw,冷负荷指标为108.6w/ m2。冷冻机房位于地下二、三层,采用4395kw/台(1250rt/台)离心式冷水机组三台,冷媒为r134a。冷冻水供回水温度7/12,冷却水进出水温度32/37。冷冻水系统为一次泵复式变流量系统。水泵三用一备,抽出式设置。分、集水器间设旁通管和压差调节阀以保证供回水管路压力平衡及过渡季出现冷冻回水温度过高时降低其温度,使冷水机组安全运行。为避免负荷偏载发生、平衡管网阻力,在水泵出口上设置动态平衡阀以保证水系统在出现流量变化等状况时能安全、平稳地工作。水系统由设在屋顶的膨胀水箱定压,冷冻水系统充水及补水均使用软化水。空调水系统主干管采用下供下回双管异同程结合式系统,按空气、新风处理机组和风机盘管两个环路供水。空气、新风处理机组环路为四管制,为有利于冬季加热盘管防冻,提高传热效率,热水供回水温度为85/60,由热交换站提供。为解决管路水力失调和节能的问题,各末端机组均设静态平衡阀和电动调节阀。风机盘管环路为二管制,冬、夏季供水转换在冷冻机房进行,冬季供回水温度为60/50,各供水单元回水干管上均设静态平衡阀。四管制供水,使系统具备同时供应冷热水的可能性。尤其是在过渡季,当大厦南北两侧要求分别供冷、暖时,通过管路切换,可满足要求。根据房间的使用功能,设置了全空气空调系统和风机盘管加新风的空调系统。地下一层餐厅、多功能厅、厨房、地下二层变配电间及首层大堂、顶层俱乐部采用全空气系统。根据各自的负荷特点,空调循环风量为3540m3/h.m2,新风比为3045%。综合考虑节能、降低投资、保证送风的清洁度和便于控制管理的要求,除厨房和变配电间之外,均采用一次回风系统。厨房和变配电间为直流式系统。一层大堂气流组织方式为双侧对喷多股平行射流方式,其余均为上送上回或侧送上回方式。为保证新风的清洁度,避免新、排风的交叉污染,各系统新风取风方式结合建筑特点采取由集中新风竖井从大厦上部引入和各层就地取风的两种方式,并使新风口远离各排风口。空气、新风处理机组均采用了初、中效过滤,以保证室内空气洁净度达到高标准。冬季加湿为液下浸透湿膜方式,餐厅、厨房、变配电间冬季不设加湿。为避免由于冬、夏季冷热水温差过大造成盘管因热胀冷缩导致过度疲劳、缩短使用寿命,采用了冷热双盘管。各层办公室和人员流动性大,负荷变化频繁的首层商务、服务、展示厅、零售店、贵宾室及中小会议室等采用风机盘管加新风系统。针对销售和出租以及物业管理的需要,各层办公室大开间区域均按约100m2面积划分控制单元、设置供回水回路以便于检修和维护并避免干扰其它租户。为了减少室内风机盘管的负荷,减少凝结水量,有利于降低风机盘管的噪音,保证新风的清洁度,将新风处理到室内状态的机器露点温度并送至风机盘管出风口上。这一做法还避免了若将新风送至风机盘管回风口位置上,当风机盘管的风机停止时,新风从回风口流入房间把沾附在回风过滤网上的灰尘吹入室内的缺点。为保证大厦24小时值守的机要部门、业务值班室及计算机中心等特殊部门的正常运行并不受集中空调系统运行的影响和干扰,节约能源,设置了局部空调系统。电话总机房、消防安全监控中心,楼宇自动化监控中心分别设置风冷柜式空调机组;计算机中心采用机房专用恒温恒湿机组;航运业务值班室及机要室采用vrv系统;弱电电缆引入小室和电梯机房采用分体空调。冬季热源及采暖系统设计采暖空调热负荷为12650kw,热指标为115.8w/m2。热源由城市热网供给,一次水供回水温度为95/70,经热交换后,高温二次水供回水温度为85/60,供采暖系统及空气、新风处理机组使用。各类机房、自行车库等设58的值班采暖,人防掩蔽体采暖设计温度为18,厕所为16;低温二次水供回水温度为60/50,供风机盘管和汽车坡道化雪系统使用(化雪系统因故未上)。为保证一层室内良好的温度环境,抵挡大门的冷风侵入,在各大门入口处均设置了热空气幕。通风防排烟系统各类机房或库房的通风换气次数名称换气次数(次/h)名称换气次数(次/h)地下库房3变配电所20厕所10油库、油泵房10厨房40冷冻机房、8汽车库6水泵房3煤气表房10热交换站、锅炉房10柴油发电机房12电缆引入小室5为避免二次污染,结合大厦建筑结构的特点,地下各类用房分别采用窗井排、补风及屋顶高空排放两种通风排烟方式。地下各类机房、库房和汽车库均通过不同窗井排风排烟和补风;垃圾间、厕所和厨房分别通过排风竖井将排风从屋顶排出。须设机械排烟的库房、汽车库及厨房等均设置采用双速风机的通风兼排烟两用系统及补风系统。部分系统根据需要同时设置了通风电动风阀和排烟防火阀。平时通风时,双速风机低速运转,开启电动风阀,关闭排烟防火阀;火灾时,双速风机高速运行,关闭电动风阀,按防烟分区开启各排烟防火阀及启动补风系统,以保证通风兼排烟的双重功能要求。中庭通风兼排烟风机位于屋顶设备层。平时根据中庭的空气温度开启部分风机,火灾时,所有风机全开,以保证顺利排烟。楼梯间及其前室,消防电梯间前室均分别设置机械加压送风系统。着火时,通过楼梯间常开风口及被开启的前室着火层及其上下各一层的风口送风,使风压按楼梯间前室走道形成递减的压力梯度,以达到防烟的目的。须设机械排烟的空调房间及内走道均设置机械排烟系统或通风兼排烟系统。为保证排烟顺利,在无自然补风条件的空调房间,利用其空调系统进行补风:即按防烟分区分别设置排烟防火阀,着火时,开启机械排烟系统及该防烟分区的排烟防火阀,保持空调送风作为补风,达到空调系统按防烟分区及时补风,排烟系统顺利排烟的目的。空调系统控制作为大厦先进的bas楼宇自控系统重要组成部分的空调系统控制,是保证空调系统达到高效节能的目的,实现现代化运行管理的重要手段。根据大厦的功能特点,为了便于管理和节省投资,空调系统控制采取了中央控制和局部区域自控相结合的方式。冷冻机房设置双重控制即以机房就地控制为主,以中央控制室监控为辅的方式。自控包括开停机的自动动作程序,通过负荷流量计算来确定开机台数及调节运行负荷率、机组的轮时启动程序以及旁通环路的自动开启和关闭。空气、新风处理机采取以中央控制为主、就地控制为辅的方式。空气处理机组自控包括根据回风温、湿度控制其表冷(或加热)段及加湿器(冬季)的水阀开度、调节新风比、通过过滤器两侧的压差传感信号报告过滤器的堵塞情况、提供风机故障报警及设备停机时自动关闭新风阀。新风处理机组自控包括根据室外空气焓值控制其表冷(或加热)段及加湿器(冬季)水阀开度,通过过滤器两侧的压差信号报告过滤器的堵塞情况,提供风机故障报警及设备停机时自动关闭新风阀,冬季当加热段后温度低于5及停机时提供防冻保护。门厅、厕所等公共场所的风机盘管采取中央控制方式,由中央控制室实行远程群控。其它专用场所风机盘管采取局部区域就地控制方式。通过温控三速开关控制风机盘管风机的启停和三速运转,根据室温自动调节盘管水阀的开关。经验及教训冷水机组的配置及外遮阳的应用远洋大厦冷水机组配置方案因业主的原因及建筑的变化经历了“部分冰蓄冷”、“二大一小主机”、及目前的“三大主机”的配置变动。大厦在建期间,由于加层(增加了二层)以及带形镀膜玻璃窗改为落地白色透明玻璃点式幕墙,使建筑面积增加了近1.5万m2,窗墙比由原来的1:4变为3:1,窗玻璃的遮挡系数也变大,导致冷负荷大为增加。在冷冻机房和变配电所无法扩大增容的情况下,采取了三台1250rt/台的冷机配置,并在大厦东、西、南三受光面设置了大面积卷帘式智能化外遮阳。经过四个夏季的运行,冷水机组和外遮阳的联合使用满足了设计要求,但晚上须正常启用一台冷机才能负担夜间负荷。由于大厦24小时工作的部门均设置了独立的局部空调系统,当晚上加班人员离去后冷水机组就停止制冷,晚上加班期间负荷变化不显著,因此在本工程中,大冷机低负荷运行的不合理情况并不明显。卷帘式外遮阳的有效使用,大大减少了窗玻璃的辐射得热,达40%以上。削减了装机冷量和电量,缓解了过渡季东、南、西向房间过热的程度,是节能和节省运行费用的途径之一。四管制供水及动、静态平衡阀的配合使用由于大厦大面积使用白色透明玻璃
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宜宾市兴文县2024-2025学年三下数学期末监测试题含解析
- 南京中医药大学《社会工作技巧工作坊人际沟通技巧》2023-2024学年第二学期期末试卷
- 湛江市高三月调研考试文综地理试题
- 2025年度借款合同补充协议范本
- 2025租房合同模板范本
- 2025子女租赁公寓合同
- 2025家庭居室装饰装修工程设计施工合同范本
- 2025年高考历史总复习考前历史主干知识梳理提纲
- 2025济南市劳动合同样本新
- 2025年高考历史阶段特征总结汇编(超全面)
- FITS加氢说明书
- 半导体物理与器件物理
- 200句话搞定上海中考单词(精华版)
- 船舶辅锅炉的自动控制系统分析
- 新员工培训考试【图书专员】
- 防伪包装技术
- 49000DWT江海直达成品油船设计
- 建设工程监理费计算器
- X互联网公司WLAN无线网络优化方案全解
- 装配及检验规范(修订版)【新版】
- 合成宝石特征x
评论
0/150
提交评论