《路径无关》PPT课件.ppt_第1页
《路径无关》PPT课件.ppt_第2页
《路径无关》PPT课件.ppt_第3页
《路径无关》PPT课件.ppt_第4页
《路径无关》PPT课件.ppt_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、曲线积分与路径无关的定义,B,A,如果在区域G内有,第四节 平面曲线积分与积分路径无关的条件,二、平面上曲线积分与路径无关的等价条件,定理2. 设D 是单连通域 ,在D 内,具有一阶连续偏导数,(1) 沿D 中任意光滑闭曲线 L , 有,(2) 对D 中任一分段光滑曲线 L, 曲线积分,(3),(4) 在 D 内每一点都有,与路径无关, 只与起止点有关.,函数,则以下四个条件等价:,在 D 内是某一函数,的全微分,即,说明: 积分与路径无关时, 曲线积分可记为,证明 (1) (2),设,为D 内任意两条由A 到B 的有向分段光滑曲,线,则,(根据条件(1),证明 (2) (3),在D内取定点,因曲线积分,则,同理可证,因此有,和任一点B( x, y ),与路径无关,有函数,证明 (3) (4),设存在函数 u ( x , y ) 使得,则,P, Q 在 D 内具有连续的偏导数,从而在D内每一点都有,证明 (4) (1),设L为D中任一分段光滑闭曲线,(如图) ,利用格林公式 , 得,所围区域为,证毕,解:,说明:,根据定理2 , 若在某单连通域区域内,则,2) 可用积分法求d u = P dx + Q dy在域 D 内的原函数:,及动点,或,则原函数为,取定点,1) 计算曲线积分时, 可选择方便的积分路径;,例2. 验证,是某个函数的全微分, 并求,出这个函数.,证: 设,则,由定理2 可知, 存在函数 u (x , y) 使,。,。,解,例4 计算,其中L为一无重点且不过原点,的分段光滑正向闭曲线.,解: 令,设 L 所围区域为D,由格林公式知,在D 内作圆周,取逆时,针方向, 对区域,应用格,记 L 和 l 所围的区域为,林公式 , 得,例5. 验证,在右半平面 ( x 0 ) 内存在原函,数 , 并求出它.,证: 令,则,由定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论