初中数学知识点手册中考必备.doc_第1页
初中数学知识点手册中考必备.doc_第2页
初中数学知识点手册中考必备.doc_第3页
初中数学知识点手册中考必备.doc_第4页
初中数学知识点手册中考必备.doc_第5页
已阅读5页,还剩65页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省2011年初中毕业生数学学科学业考试大纲一、考试性质初中毕业生数学学科学业考试(以下简称为数学学科学业考试)是义务教育阶段数学学科的终结性考试,目的是全面、准确地评估初中毕业生达到 全日制义务教育数学课程标准(以下简称标准)所规定的数学毕业水平的程度。考试的结果既是考查我省初中毕业学生数学学业水平是否达到义务教育阶段数学学科毕业标准的主要依据,也是高中阶段学校招生的重要依据之一。二、指导思想广东省初中毕业生学业考试数学科考试内容,是以教育部制定的标准为依据,结合我省课程改革的实际。1数学学科学业考试要体现标准的评价理念,有利于引导和促进数学教学全面落实标准所设立的课程目标,有利于改善学生的数学学习方式、丰富学生的数学学习体验、提高学生学习数学的效益和效率,有利于高中阶段学校综合、有效地评价学生的数学学习状况。2数学学科学业考试既要重视对学生学习数学知识与技能的结果和过程的评价,也要重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还应当重视对学生数学认识水平的评价。3数学学科学业考试命题应当而向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得相应发展。三、考试内容与要求作为学生义务教育阶段的终结性考试,应根据标准的总体目标关注初中数学体系中基础和核心的内容,试题涉及的知识和技能要求应以以标准中的“内容标准”为基本依据,不能拓展范围与提高要求。要突出对学生基本数学素养的考查,注重考查学生掌握适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能的情况,对在数学学习和应用数学解决过程中最为重要的,必须掌握的核心概念、思想方法和常用的技能要重点考查。主要考查的方面包括:基础知识与基本技能;数学活动经验;数学思考;对数学的基本认识;解决问题的能力等。第一部分 数与代数1数与式(l)有理数 理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。 理解有理数的运算律,并能运用运算律简化运算。 能运用有理数的运算解决简单的问题。 能对含有较大数字的信息作出合理的解释和推断。(2)实数 了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。 了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。 了解无理数和实数的概念,知道实数与数轴上的点一一对应。 能用有理数估计一个无理数的大致范围。 了解近似数与有效数字的概念;在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值。 了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化)。(3)代数式能理解用字母表示数的意义。 能分析简单问题的数量关系,并用代数式表示。 能解释一些简单代数式的实际背景或几何意义。 会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代人具体的值进行计算。 (4)整式与分式 了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。 了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)。 会推导乘法公式: ;, 了解公式的几何背景,并能进行简单计算。 会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算。 2方程与不等式(l)方程与方程组 能够根据具体问题中的数量关系列出方程。 会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个)。理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。能根据具体问题的实际意义,检验结果是否合理。(2)不等式与不等式组 能够根据具体问题中的大小关系了解不等式的意义和基本性质。 会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。 能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。3函数(1)函数 通过简单实例,了解常量、变量的意义。 能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。 能结合图象对简单实际问题中的函数关系进行分析。 能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。 能用适当的函数表示法刻画某些实际问题中变量之间的关系。 结合对函数关系的分析,尝试对变量的变化规律进行初步预测。(2)一次函数 结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。 会画一次函数的图象,根据一次函数的图象和解析表达式()探索并理解其性质(k0或k 0时,y值随x值增大而减小的是( )A. B. C. D. 6.若ac0b,则abc与0的大小关系是( )A. abc0 D. 无法确定7.下面的计算正确的是( )A. B. C. D. 8.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( ) 9.当实数x的取值使得有意义时,函数y=4x+1中y的取值范围是( )(A.y-7 B. y9 C. y9 D. y910.如图,AB切O于点B,OA=2,AB=3,弦BC/OA,则劣弧BC的弧长为( )A. B. C. D. 二、填空题:(每小题3分,共18分)11.9的相反数是_12.已知=260,则的补角是_度。13.方程的解是_14.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形,已知OA=10cm,=20cm,则五边形ABCDE的周长与五边形的周长的比值是_15.已知三条不同的直线a、b、c在同一平面内,下列四条命题:如果a/b,ac,那么bc; 如果b/a,c/a,那么b/c;如果ba,ca ,那么bc;如果ba,ca ,那么b/c.其中真命题的是_。(填写所有真命题的序号)16.定义新运算“”,则=_。三、解答题(本大题共9大题,满分102分)17.(9分)解不等式组18. (9分)如图,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且AE=AF。ADFEBC求证:ACEACF19. (10分)分解因式:8(x2-2y2)-x(7x+y)+xy正面20. (10分)5个棱长为1的正方体组成如图的几何体。(1)该几何体的体积是_(立方单位) 表面积是_(平方单位)(2)画出该几何体的主视图和左视图。21.(12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。已知小敏5月1日前不是该商店的会员。(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?22.(12分)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求a的值;(2)用列举法求以下事件的概率:从上网时间在610小时的5名学生中随机选取2人,其中至少有1人的上网时间在810小时。23.(12分)已知RtABC的斜边AB在平面直角坐标系的x轴上,点C(1,3)在反比例函数y=的图象上,且sinBAC=。(1)求k的值和边AC的长;(2)求点B的坐标。24.(14分)已知关于x的二次函数y=ax2+bx+c(a0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)(1)求c的值;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记PCD的面积为S1,PAB的面积为S2,当0a1时,求证:S1- S2为常数,并求出该常数。25. (14分)如图7,O中AB是直径,C是O上一点,ABC=450,等腰直角三角形DCE中DCE是直角,点D在线段AC上。(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;(3)将DCE绕点C逆时针旋转(00c(a b为最短的两条线段)a-bc (a b为最长的两条线段)3第三边取值范围: ab c ab 如两边分别是5和8 则第三边取值范围为3x13.4 对应周长取值范围若两边分别为a,b则周长的取值范围是 2aL2(ab) a为较长边。如两边分别为5和7则周长的取值范围是 14L24.5 三角形的角平分线、高、中线都有三条,都是线段。其中角平分线、中线都交于一点且交点在三角形内部,高所在直线交于一点。6“三线”特征:三角形的中线平分底边。分得两三角形面积相等并等于原三角形面积的一半。分得两三角形的周长差等于邻边差。7 直角三角形:两锐角互余。 30度所对的直角边是斜边的一半。三条高交于三角形的一个顶点。 A=1/2B=1/3C A: B: C=1:2:3 A=BC A: B: C=1:1:2 A=90-B 8 相关命题:1 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。2 锐角三角形中最大的锐角的取值范围是60X90 。最大锐角不小于60度。3 任意一个三角形两角平分线的夹角=90第三角的一半。4 钝角三角形有两条高在外部。5 全等图形的大小(面积、周长)、形状都相同。6 面积相等的两个三角形不一定是全等图形。7 能够完全重合的两个图形是全等图形。8 三角形具有稳定性。9 三条边分别对应相等的两个三角形全等。10 三个角对应相等的两个三角形不一定全等。11 两个等边三角形不一定全等。12 两角及一边对应相等的两个三角形全等。13 两边及一角对应相等的两个三角形不一定全等。14 两边及它们的夹角对应相等的两个三角形全等。15 两条直角边对应相等的两个直角三角形全等。16 一条斜边和一直角边对应相等的两个三角形全等。17 一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。18 一角和一边对应相等的两个直角三角形不一定全等。19 有一个角是60的等腰三角形是等边三角形。第八章 二元一次方程组一、知识点8.1二元一次方程组含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。8.2消元由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。8.3再探实际问题与二元一次方程组第九章 不等式与不等式组一、知识点9.1不等式9.1.1不等式及其解集用“”或“”号表示大小关系的式子叫做不等式。使不等式成立的未知数的值叫做不等式的解。能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。9.1.2不等式的性质不等式有以下性质:不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变。不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变。 不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变。9.2实际问题与一元一次不等式解一元一次方程,要根据等式的性质,将方程逐步化为xa的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa(或xa)的形式。9.3一元一次不等式组把两个不等式合起来,就组成了一个一元一次不等式组。几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。9.4课题学习 利用不等关系分析比赛第十章 数据的收集 整理与描述第一节 统计调查 第二节 直方图 八年级上册第十一章 全等三角形11.1 全等三角形 11.2 三角形全等的判定 11.3 角的平分线的性质 第十二章 轴对称 12.1 轴对称 12.2 作轴对称图形 12.3 等腰三角形 第十三章 实数 13.1 平方根 13.2 立方根 13.3 实数 第十四章 一次函数 14.1 变量与函数 14.2 一次函数 14.3 用函数观点看方程(组)与不等式 14.4 课题学习 选择方案 第十五章 整式的乘除与因式分解 15.1 整式的乘法 15.2 乘法公式 15.3 整式的除法 第十一章 全等三角形一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。理解:全等三角形形状与大小完全相等,与位置无关;一个三角形经过平移、翻折、旋转可以得到它的全等形;三角形全等不因位置发生变化而改变。2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。理解:长边对长边,短边对短边;最大角对最大角,最小角对最小角;对应角的对边为对应边,对应边对的角为对应角。(2)全等三角形的周长相等、面积相等。(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:二、角的平分线:从一个角的顶点得出一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论