数值天气预报习题.doc_第1页
数值天气预报习题.doc_第2页
数值天气预报习题.doc_第3页
数值天气预报习题.doc_第4页
数值天气预报习题.doc_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大气数值模式及模拟(数值天气预报)习 题第一章 大气数值模式概论1试述原始方程组、全球模式、区域模式和非静力模式之间的区别。2试述天气模式、气候模式的主要区别?3区域气候模式、大气环流模式、中尺度模式、陆面模式、边界层模式各有什么特点? 第二章 大气运动方程组1. 试证明球坐标系中单位矢量i的个别变化率为 2.试说明局地直角坐标系(即z坐标系)中的运动方程与球坐标系中的运动方程有何异同?3用球坐标导出下面两个方程: 4.由热力学方程推导出如下方程: 式中为单位质量理想空气内能的变化率,为空气的定容比热,为可逆过程中单位质量非粘性气体在单位时间里膨胀所作的功。Q为外界对单位质量空气的加热率。第三章 数值计算方案1. 什么是差分格式的收敛性和稳定性?二者之间有何关系?2. 试证明一阶偏微商的三点差商近似式:的截断误差为。3. 用中央差分将涡度方程 写成有限差形式。设,并取水平坐标步长为,时间步长为。4. 分别对x轴上的i+1和i+3格点,以d和2d为步长,写出一阶微商的前差、后差和中央差的差分近似式,以及二阶微商的二阶中央差分近似式。第四章 初始条件和边界条件1. 赤道附近地转偏向力很小,地转关系不适用。请给出一个新的协调风场与气压场的静力初始化关系。2. 简要地叙述动力初始化的基本思想,主要步骤。如何加速动力初始化过程?3. 请说明海绵边界条件为何能吸收向外传播的波动能量。4. 概括地叙述套网格预报的几种主要方法,套网格预报方法的优点,它们还存在什么问题?第五章 斜压原始方程模式1.试导出坐标系中的气压梯度力所做功的功率。2.若不考虑地形作用,试证明大气的绝对角动量守恒: 3函数 这里为常数,导出它满足准地转斜压大气模式的预报方程这里常数,在此条件下有 4. 已知静力方程求证: 第六章 斜压涡度方程谱模式1. 在南、北极之间以=等距地取37个格点,试用ECMWF所使用的递推关系式编制一个计算连带勒让德函数的程序(,j=0,1,37; m=0,1,20;n=0,1,20)。2. 试证明标准化得勒让德多项式 是在区间【-1,1】上关于权函数的正交多项式。3. 试证明标准化得勒让德多项式的首项系数为 第七章 模式物理过程参数化 1. 边界层参数化中,何为显式方法?何为隐式方法?举例说明。 2. 试总结给出对边界层采用多层参数化时,各物理量的次网格尺度输送通量密度的主要表达式。第八章 资料同化基础1. 请论述四维同化的必要性,扼要地介绍四维同化的几种主要方法。 2. 做一个Bratseth迭代最优插值以确定要得到满意的趋于OI的近似需要多少次迭代。第九章 大气数值模式及其模拟1.试分析并对比说明和两种分解方法处理问题的异同。2试绘出WRF模式的计算流程图。目录简答题161斜压模式和正压模式有何区别?16优点:17缺点:18名词解释:1 数值天气预报 在给定初始和边界条件下,通过数值方法求解大气运动方程组,即由已知初始时刻的大气状态,通过求解大气运动方程组的解,预报未来时刻大气状态的方程。2 地图放大系数 影像面上的距离与地球上相应的实际距离之比值。3 模式大气 实际大气包含各种时空尺度的气体运动,物理过程复杂多变,为使数值天气预报得以实现,在不失大气主要特征的前提下,将非常复杂的大气理想化,这种简化后的大气模型所描述的大气称为模式大气。4 差分格式的稳定性 对于任意给定的初始条件和时间步长t等,随着积分步数的增长,差分解是否有界。5 非线性计算不稳定 非线性偏微分方程即使满足相应的线性稳定性判据,非线性差分方程可能会稳定地计算一段时间,但是随后计算结果突然迅速增长而产生计算不稳定现象,这种因非线性作用而产生的不稳定成为非线性计算不稳定。6 柯朗条件CFL 保证线性计算稳定的充分条件,对于固定的网格距x,时间步长t与波动的传播速度c成反比。7 混淆误差 差分方法中,原来的连续函数被离散为有限个点的函数值,它能描述的最小波长的波是2x格距的波,非线性相互作用会不断产生波长小于2x格距的波,这是网格系统会错误地将这种波表示成某一种波长大于2x格距的波,从而造成波的混淆,这样形成的误差称为混淆误差。8 静立初始化(静处理) 用一些一直的风压场平衡关系,或用运动方程等求的诊断方程来处理初值,使风场向气压场平衡或近似平衡的方法。9 动力初始化(动处理) 通过预报方程本身的特性,调整风压场达到近似的平衡 ,以致不含有明显虚假的重力惯性波的方法。10 变分分析方法 通过变分原理使初始资料在一定动力约束下调整,达到各种初始场协调一致的方法。11 静力扣除法 s坐标系虽然下边界简单,但是方程组中水平气压梯度力项变得复杂,而且形式上有一项变为两项;同时在坡度较大的地区,水平气压梯度力项比这两项的绝对值要小得多,成为两大项之间的一个小差。为减小山脉地区的计算误差,设法中两大项中扣除满足静力平衡关系的公共部分,使其变为量小项之代数和,从而提高精度。12 水平侧边界条件分类 固定边界条件 法向速度为0的边界条件 海绵边界条件 外推边界条件 对称反对称边界条件13 过滤模式 垂直方向取静力近似可以滤去垂直声波,水平无辐散或地转近似的假定可以滤去重力波和水平声波;这些滤波后的方程意味着对基本方程的简化,它们构成过滤模式。14 大气数值模式 进行气候数值模拟预测和天气预报的数学方案。或者说,对一定的模式大气,用以描述他的特征和运动规律的闭合方程组及其求解方法成为数值预报模式或大气模式。15 地图投影误差的种类 距离误差:投影面上长度的放大活缩小倍数随地点或方向而改变 面积误差:投影面上面积的放大或缩小倍数随地点而改变 角度误差或形状误差:投影面上任意两条交线的夹角不等于地球上相应两条交线的夹角,或者说投影面上某一地理区域的形状与地球上相应区域的形状不相似。16 平滑:用某点周围若干点的值进行加权平均来代替该点的值,经过这样处理的物理量场可以衰减或者滤掉短波分量。17 响应函数 平滑后的振幅与平滑前的振幅之比。18 混合坐标系 在模式大气中某一部分用一种坐标系,另一部分用另一种坐标系,两种坐标系之间通过垂直速度联系起来。19 单向方案 每个时间步长先制作粗网格预报,用它的预报值为细网格提供边界值,再制作细网格的预报。在粗、细网格预报时间步长不一致、或粗、细网格格点不相重合处,一般以内插方式求出细网格的值。20 双向方案 先做粗网格预报,为细网格提供边值;然后用细网格模式做预报,再把粗、细网格相重合点上的粗网格值用细网格值代替,去做粗网格预报。如此反复,直到预报终止时刻结束。简答题1斜压模式和正压模式有何区别?基本假定上:正压模式假设大气满足静力平衡,有自由面,是自动正压大气模型;斜压模式仅假定大气满足静力平衡,考虑大气斜压性,可以考虑温度平流,垂直运动。研究范围上:正压模式只研究大气某一层运动,斜压模式可研究大气的三维运动。差分格式上:正压模式仅考虑水平差分格式,斜压模式水平差分、垂直差分都要考虑。方程上:正压模式根据浅水方程组,没有考虑非绝热加热、摩擦、水汽方程;斜压模式根据s坐标通量方程组,考虑了非绝热加热、摩擦、水汽方程和温度扩散。优点:对空间微商的计算精确,从而使得用谱方法估计的位相速度比一般差分法估计的要准确。对于二次型的非线性项的计算,消除了非线性混淆现象,可避免由此引起的计算不稳定。用谱方法展开求解球坐标下的控制方程组,不需要像有限差分法那样,对球面网格中的极点做特殊处理,因而特别适合于全球或半球模式。尤其是三角形阶段的球谐函数展开式,可以得到在整个球面均匀的水平分辨率,这是网格点发难以完全做到的。在谱模式中易于应用半隐式时间积分方案,其计算比网格点简单,可节省计算时间。谱方法能自动并彻底地滤去短波,效果比一般差分法中用平滑算子要好。由于在全球模式中通常选择球谐函数作为谱展开式的基函数,而球谐函数正好是球面上的拉普拉斯算子的特征函数。所以在模式中计算2p(P为正整数)型的水平扩散项非常方便。基于同样的理由,用谱方法解泊松方程或赫姆霍兹非常也特别方便,不需要进行迭代。缺点:运算量和存储量均较大,对于计算机的存储和数据交换要求较高。特别当模式的水平分辨率提高时,谱方法的计算量比格点法增加地更快。对分布连续性较差的物理量,容易发生吉布斯现象,需要较大的谱分量才能表示。当m0时,在高纬度连带勒让德函数Pm,n()的值很小,用球谐函数展开地形高度,误差较大。制作有限区域或套网格预报,不如差分法灵活方便。3 三角形截断和菱形截断三角形截断的特点:三角形截断具有各向同性的性质。三角形截断能更好地描述平均纬向环流和超长波。从计算角度来看,三角形截断要比同样自由度的菱形截断计算量小一些。菱形截断的特点:菱形截断具有各向异性的性质。菱形截断使低纬地区东西向的分辨率减少。菱形截断使高纬地区中等纬向波数的分辨率增加。菱形截断的计算量较大。选择原则:选择波数截断方式的原则应当是最充分地利用给定的自由度。也就是说在一定的计算量下获得最精确的计算结果;或者是在一定的精度要求下花费最小的计算量。当然,具体选择哪一种波数截断方式还有赖于我们所研究问题的性质和具有的计算机设备条件。低分辨率采用菱形截断较好,中高分辨率采用三角形截断较好。对于中长期预报,采用三角形截断具有一定的优势。4 如何克服非线性计算不稳定的方法进行空间或者时间平滑,滤去短波分量。在大气方程组中加入水平扩散项2A,A为某一物理量,为扩散系数,扩散作用的大小由扩散系数来控制。构造具有隐式平滑或者某种选择性衰减作用的差分格式。构造能量守恒的差分格式,使差分方程尽可能保持连续系统的物理规律和能量关系。5写出所谓“三步法”或“多步法”的积分公式。6 试述显式(中央差分)与隐式差分格式各自的优缺点。中央差分格式:数值计算简单由于计算解在奇数步和偶数步会出现发散的现象,因此格式不够稳定,需要在时间积分过程中附加时间和空间平滑措施。格式的计算精度高,格式涉及到三个时间层,有计算解。一般为了减小初始积分的计算解的振幅,可以采用“三步法”的积分方案。隐式格式:计算复杂 ,格式绝对稳定,可以取较大的时间步长,格式无计算解。实际计算过程中,不能直接逐点来进行预报,需要把所有的网格点联立起来,求解一个代数方程组才能得到预报值。7 局地直角坐标系?与一般直角坐标系的区别?8 一方面,由于模式需要上下边界,另一方面,不同的模式物理过程需要在不同垂直坐标下描述。因此,不同坐标系之间经常需要相互转换。物理约束:P坐标系:在垂直方向满足静力平衡;P是z的单调函数。s坐标系与p坐标系具有相同的物理约束。坐标系:大气在垂直方向满足静力平衡,大气是层结稳定的。9常用的数值方法有:差分方法:采用差商代替微商,使得偏微分方程组变成差分方程组,可以用代数方法求解。(简单,应用广泛)谱方法:利用适当的基函数(如球谐函数),把解展开成有限项的线性组合,将对一个变量预测的问题转化为预报展开系数的问题;有限元方法:把偏微分方程问题变成相应的泛函极小问题,以变分原理为基础,又吸收差分方法的思想而发展起来的新方法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论