2019届高考数学复习函数考点规范练13函数模型及其应用文新人教A版.docx_第1页
2019届高考数学复习函数考点规范练13函数模型及其应用文新人教A版.docx_第2页
2019届高考数学复习函数考点规范练13函数模型及其应用文新人教A版.docx_第3页
2019届高考数学复习函数考点规范练13函数模型及其应用文新人教A版.docx_第4页
2019届高考数学复习函数考点规范练13函数模型及其应用文新人教A版.docx_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点规范练13函数模型及其应用基础巩固1.在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,专家预测经过x年可能增长到原来的y倍,则函数y=f(x)的图象大致为()2.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是()A.y=100xB.y=50x2-50x+100C.y=502xD.y=100log2x+1003.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为()A.3B.4C.6D.124.已知某矩形广场的面积为4万平方米,则其周长至少为()A.800米B.900米C.1 000米D.1 200米5.某产品的总成本y(单位:万元)与产量x(单位:台)之间的函数关系是y=3 000+20x-0.1x2(0x240,xN*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台6.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子租不出去.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出去的房子不需要花这些费用).要使公司获得最大利润,每套公寓月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元7.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况8.世界人口在过去40年内翻了一番,则每年人口平均增长率是(参考数据lg 20.301 0,100.007 51.017)()A.1.5%B.1.6%C.1.7%D.1.8%9.一个人以6 m/s的速度去追赶停在交通灯前的汽车,当他离汽车25 m时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为s=t2 m,则此人()A.可在7 s内追上汽车B.可在9 s内追上汽车C.不能追上汽车,但期间最近距离为14 mD.不能追上汽车,但期间最近距离为7 m10.某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,若顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算.可以享受折扣优惠金额折扣率不超过500元的部分5%超过500元的部分10%某人在此商场购物总金额为x元,可以获得的折扣金额为y元,则y关于x的解析式为y=若y=30元,则他购物总金额为元.11.设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正常数).公司决定从原有员工中分流x(0x100,xN*)人去进行新开发的产品B的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A的年产值不减少,则最多能分流的人数是.能力提升12.点P从点O出发,按逆时针方向沿周长为l的图形运动一周,O,P两点连线的距离y与点P走过的路程x的函数关系如图,则点P所走的图形是()13.某食品的保鲜时间y(单位:h)与储藏温度x(单位:)满足函数关系y=ekx+b(e=2.718为自然对数的底数,k,b为常数).若该食品在0 的保鲜时间是192 h,在22 的保鲜时间是48 h,则该食品在33 的保鲜时间是()A.16 hB.20 hC.24 hD.28 h14.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=ae-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过min,容器中的沙子只有开始时的八分之一.15.为了在“十一”黄金周期间降价搞促销,某超市对顾客实行购物优惠活动,规定一次购物付款总额:若不超过200元,则不予优惠;若超过200元,但不超过500元,则按标价给予9折优惠;若超过500元,则其中500元按第条给予优惠,超过500元的部分给予7折优惠.辛云和她母亲两次去购物,分别付款168元和423元,假设他们一次性购买上述同样的商品,则应付款额为.高考预测16.如图,正方形ABCD的顶点A,B,顶点C,D位于第一象限,直线l:x=t(0t)将正方形ABCD分成两部分,记位于直线l左侧阴影部分的面积为f(t),则函数s=f(t)的图象大致是()答案:1.D解析:由题意可得y=(1+10.4%)x,函数是底数大于1的指数函数,故选D.2.C解析:根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型.3.A解析:设隔墙的长为x(0x6),矩形面积为y,则y=x=2x(6-x)=-2(x-3)2+18,故当x=3时,y最大.4.A解析:设这个广场的长为x米,则宽为米.故其周长为l=2800,当且仅当x=200时取等号.5.C解析:设利润为f(x)万元,则f(x)=25x-(3 000+20x-0.1x2)=0.1x2+5x-3 000(0x240,xN*).令f(x)0,得x150,故生产者不亏本时的最低产量是150台.6.B解析:由题意,设利润为y元,租金定为(3 000+50x)元(0x70,xN),则y=(3 000+50x)(70-x)-100(70-x)=(2 900+50x)(70-x)=50(58+x)(70-x)50=204 800,当且仅当58+x=70-x,即x=6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B.7.B解析:设该股民购这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a1.1n元,经历n次跌停后的价格为a1.1n(1-10%)n=a1.1n0.9n=a(1.10.9)n=0.99naa,故该股民这支股票略有亏损.8.C解析:设每年人口平均增长率为x,则(1+x)40=2,两边取以10为底的对数,则40lg(1+x)=lg 2,所以lg(1+x)=0.007 5,所以100.007 5=1+x,得1+x=1.017,所以x=1.7%.9.D解析:已知s=t2,车与人的间距d=(s+25)-6t=t2-6t+25=(t-6)2+7.当t=6时,d取得最小值7.结合选项可知选D.10.1 350解析:若x=1 300,则y=5%(1 300-800)=25(元)1300.故10%(x-1 300)+25=30,得x=1 350.11.16解析:由题意,分流前每年创造的产值为100t(万元),分流x人后,每年创造的产值为(100-x)(1+1.2x%)t,则解得0x.因为xN*,所以x的最大值为16.12.C解析:函数的运动图象有两个特点,点P运动到周长的一半时,OP最大;点P的运动图象是抛物线.选项A,B中点P开始运动后的一段路程是直线,故不符合;选项D中OP的距离不是对称变化的,也不符合,故选C.13.C解析:由题意,得(0,192)和(22,48)是函数y=ekx+b图象上的两个点,所以由得,48=e22keb,把代入得e22k=,即(e11k)2=,所以e11k=.所以当储藏温度为33 时,保鲜时间y=(e11k)3eb=192=24(小时).14.16解析:当t=0时,y=a,当t=8时,y=aa,可得e-8b=.故容器中的沙子只有开始时的八分之一时,可得y=ae-bt=a,即e-bt=(e-8b)3=e-24b,则t=24,所以再经过16 min,容器中的沙子只有开始时的八分之一.15.546.6元解析:依题意,价值为x元的商品和实际付款额f(x)之间的函数关系式为f(x)=当f(x)=168时,由1680.9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论