河北省邯郸大名县第一中学2019届高考数学模拟试题文.docx_第1页
河北省邯郸大名县第一中学2019届高考数学模拟试题文.docx_第2页
河北省邯郸大名县第一中学2019届高考数学模拟试题文.docx_第3页
河北省邯郸大名县第一中学2019届高考数学模拟试题文.docx_第4页
河北省邯郸大名县第一中学2019届高考数学模拟试题文.docx_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邯郸大名县第一中学2019届高考数学模拟试题 文一、单选题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则( )ABCD2已知为虚数单位,则在复平面上复数对应的点位于( )A第四象限B第三象限C第二象限D第一象限3某校共有学生2000名,各年级男、女生人数如右表已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的女学生人数为A24B16C12D84已知双曲线和椭圆有相同的焦点,则的最小值为( )A2B3C4D55圆锥的侧面展开图是半径为,圆心角为的扇形,则圆锥的表面积为( )ABCD6已知是函数的极小值点,则( )A-16B16C-2D27已知菱形的边长为2,点,分别为,的中点,则( )A3B1CD8设当时,函数取得最大值,则( )ABCD9如图,在矩形中,点,分别在,上,且,若沿点,连线折成如图所示的多面体,使平面,则该多面体的正视图的面积为( )ABCD10如图,长方体中,点分别是, ,的中点,则异面直线与所成的角是ABCD11如图,点在圆上,且点位于第一象限,圆与正半轴的交点是,点的坐标为,若 则的值为( )A B C D12已知函数,若方程有3个不同的实根,则实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数.若,则_14若实数,满足约束条件,设的最大值与最小值分别为,则_15过原点作圆的两条切线,则两条切线所成的锐角是_.16在中,角、所对的边分别边、,若,则的取值范围是_三、解答题:共70分。解答题写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:60分。17在数列中,且(1)证明:数列是等差数列;(2)求数列的前n项和。18在三棱锥中,平面平面,设D,E分别为PA,AC中点()求证:平面PBC;()求证:平面PAB;()试问在线段AB上是否存在点F,使得过三点D,E,F的平面内的任一条直线都与平面PBC平行?若存在,指出点F的位置并证明;若不存在,请说明理由19为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为的样本,得到一周参加社区服务的时间的统计数据如下表:服务时间超过1小时服务时间不超过1小时男208女12m()求;()将表格补充完整,并判断能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?服务时间超过1小时服务时间不超过1小时合计男208女12m合计()以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.附:20已知为抛物线:的焦点,过的动直线交抛物线于,两点当直线与轴垂直时,(1)求抛物线的方程;(2)设直线的斜率为1且与抛物线的准线相交于点,抛物线上存在点使得直线,的斜率成等差数列,求点的坐标21已知函数的图象在点处的切线与直线平行.()求函数的极值;()若对于,求实数的取值范围.(二)选考题:共10分。请考生从第22、23题中任选一题作答,并用2B铅笔将答题卡所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分。22选修4-4:坐标系与参数方程 (10分)在平面直角坐标系中,已知曲线(为参数),.以原点为极点,轴的非负半轴为极轴建立极坐标系.(I)写出曲线与圆的极坐标方程;(II)在极坐标系中,已知射线分别与曲线及圆相交于,当时,求的最大值.23选修4-5:不等式选讲 (10分)已知函数,.()当,求不等式的解集;()若函数满足,且恒成立,求的取值范围.参考答案1A【解析】【分析】解一元二次不等式求得集合,解不等式求得集合,然后求两个集合的交集.【详解】由,解得;由,解得,故.故选A.【点睛】本小题主要考查集合的交集运算,考查一元二次不等式的解法,属于基础题.2A【解析】【分析】利用复数的运算法则化简z,再利用复数的几何意义即可得出结论【详解】由题知,则在复平面上复数对应的点为(1,-2),位于第四象限,故选A.【点睛】本题考查了复数的运算法则、几何意义,属于基础题3D【解析】【分析】根据题意现算出二年级女生的人数,得到三年级女生的人数,再利用分层抽样的方法抽取,即可得到答案.【详解】由题意,抽到二年级女生的概率是0.19,所以二年级的女生人数为人,所以三年级女生的人数为人,现用分层抽样的方法在全校抽取64名学生,在三年级抽取的女学生人数为人,故选D.【点睛】本题主要考查了简单的随机抽样与分层抽样的应用,其中解答中熟记分层抽样的方法,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.4B【解析】【分析】由题意可得,利用“乘1”与均值不等式可得结果.【详解】双曲线和椭圆有相同的焦点,当且仅当,即时,等号成立,的最小值为3故选:B【点睛】本题考查了圆锥曲线的简单几何性质,考查了均值不等式的应用,考查了转化能力与计算能力,属于中档题.5C【解析】【分析】由于题意可知圆锥的母线长,底面周长即扇形的弧长,由此可以求得底面的半径r,求出底面圆的面积,即可求解表面积【详解】圆锥侧面展开图是一个圆心角为120半径为3的扇形圆锥的母线长为l3,底面周长即扇形的弧长为32,底面圆的半径r1,可得底面圆的面积为r2,圆锥的表面积为:4故选C【点睛】本题考查弧长公式及旋转体的表面积公式,解答此类问题关键是求相关几何量的数据,本题考查了空间想像能力及运用公式计算的能力6D【解析】【分析】可求导数得到f(x)3x212,可通过判断导数符号从而得出f(x)的极小值点,从而得出a的值【详解】f(x)3x212;x2时,f(x)0,2x2时,f(x)0,x2时,f(x)0;x2是f(x)的极小值点;又a为f(x)的极小值点;a2故选:D【点睛】本题考查函数极小值点的定义,考查了根据导数符号判断函数极值点的方法及过程,属于基础题7D【解析】【分析】先确定一组基底,利用向量加法运算法则,用这对基底把表示出来,然后进行数量积计算。【详解】点为的中点 所以;点F为CD的中点,所以, = =因为菱形的边长为2,所以,又因为,运用数量积公式,可求=故本题选D。【点睛】本题考查了向量的数量积运算、向量的加法运算、菱形的几何性质。8D【解析】【分析】先化简已知得f(x)=,再利用三角函数的图像和性质分析函数的最值和此时的值.【详解】由题得f(x)=,其中当,即时,函数取到最大值.所以.故选:D【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.9A【解析】【分析】由图及条件可证,可得AB,由此可求正视图的面积.【详解】由题意,得,由平面,得,所以,所求多面体的的正视图的面积为故选A.【点睛】本题考查了折叠体问题,考查了三视图的知识及空间线面、线线位置关系,属于基础题.10A【解析】【分析】由题意:E,F,G分别是DD1,AB,CC1的中点,连接B1G,FB1,那么FGB1或其补角就是异面直线A1E与GF所成的角【详解】由题意:ABCDA1B1C1D1是长方体,E,F,G分别是DD1,AB,CC1的中点,连接B1G,A1EB1G,FGB1为异面直线A1E与GF所成的角或其补角连接FB1,在三角形FB1G中,AA1AB2,AD1,B1FB1G,FG,B1F2B1G2+FG2FGB190,即异面直线A1E与GF所成的角为90故选:A【点睛】本题考查两条异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养11A【解析】【分析】直接利用两点间的距离公式求出半径,再写出A的坐标,由A,B的坐标,利用两点间的距离公式即可解得-6sin+8cos=5,结合+=1,即可解得的值【详解】半径r|OB|1,由三角函数定义知,点A的坐标为(cos,sin);点B的坐标为(,),|BC|,整理可得:-6sin+8cos=5,又+=1,解得sin或,又点位于第一象限,0,sin,故选A.【点睛】本题主要考查了三角函数定义,两点间的距离公式,同角三角函数基本关系式的应用,考查了数形结合思想,属于中档题12B【解析】【分析】构造函数和,则函数的图象过定点,画出函数的图象,求出直线与相切时的值,然后结合图象可判断出所求的取值范围【详解】令和,则函数的图象过定点画出函数的图象,如下图所示由消去整理得.令,解得或(舍去).又易知曲线在处的切线的斜率为1结合图象可得:当时,和的图象有两个不同的交点,所以方程有3个不同的实根;当时,和的图象有两个不同的交点,所以方程有2个不同的实根;当时,和的图象有两个不同的交点,所以方程有1个实根或没有实根;当时,和的图象有两个不同的交点,所以方程有2个不同的实根综上可得所求的范围为故选B【点睛】解答本题的关键有两个:一个是运用转化的思想方法,将方程根的个数的问题转化为两函数图象公共点个数的问题;二是运用数形结合的思想进行求解,以增强解题的直观性解题时的注意点是确定两图象公共点个数变化时的临界位置13【解析】【分析】通过求出,代入解析式求得结果.【详解】因为所以本题正确结果:【点睛】本题考查利用分段函数解析式求解函数值的问题,属于基础题.14【解析】【分析】画出可行域,平移基准直线到可行域边界位置,由此求得最大值以及最小值,进而求得的比值.【详解】画出可行域如下图所示,由图可知,当直线过点时,取得最大值7;过点时,取得最小值2,所以.【点睛】本小题主要考查利用线性规划求线性目标函数的最值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画出可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.15【解析】【分析】根据题意作出图像,由圆方程可得圆心,圆的半径为:,由圆的切线性质可知,解,问题得解。【详解】根据题意作出图像如下:其中是圆的切线,为切点,为圆心,则由圆的方程可得:圆心,圆的半径为:,在中,可得:,又将平分,所以【点睛】本题主要考查了圆的切线性质及圆的方程,考查计算能力,属于基础题。16【解析】【分析】先根据余弦定理求C,再根据正弦定理化为角的函数关系式,最后根据正弦函数性质求结果.【详解】, ,又,因此, , ,故答案为【点睛】本题考查余弦定理、正弦定理以及正弦函数性质,考查综合分析求解能力,属中档题.17(1)见解析;(2).【解析】【分析】(1)根据数列通项公式的特征,我们对,两边同时除以,得到,利用等差数列的定义,就可以证明出数列是等差数列;(2)求出数列的通项公式,利用裂项相消法,求出数列的前项和。【详解】(1)的两边同除以,得,又, 所以数列是首项为4,公差为2的等差数列。(2)由(1)得,即,故,所以【点睛】本题考查了证明等差数列的方法以及用裂项相消法求数列前和。已知,都是等差数列,那么数列的前和就可以用裂项相消法来求解。18()见证明;()见证明;()见解析.【解析】【分析】()证明以DE平面PBC,只需证明DEPC;()证明BC平面PAB,根据线面垂直的判定定理,只需证明PABC,ABBC;()当点F是线段AB中点时,证明平面DEF平面PBC,可得平面DEF内的任一条直线都与平面PBC平行【详解】()证明:因为点E是AC中点,点D为PA的中点,所以又因为DE面PBC,PC面PBC,所以DE平面PBC ()证明:因为平面PAC面ABC,平面PAC平面ABC=AC,又PA平面PAC,PAAC,所以PA面ABC,因为BC平面ABC,所以PABC又因为ABBC,且PAAB=A,所以BC面PAB ()当点F是线段AB中点时,过点D,E,F的平面内的任一条直线都与平面PBC平行取AB中点F,连EF,连DF由()可知DE平面PBC因为点E是AC中点,点F为AB的中点,所以EFBC又因为EF平面PBC,BC平面PBC,所以EF平面PBC又因为DEEF=E,所以平面DEF平面PBC,所以平面DEF内的任一条直线都与平面PBC平行故当点F是线段AB中点时,过点D,E,F所在平面内的任一条直线都与平面PBC平行【点睛】本题考查线面平行,考查线面垂直,考查面面平行,考查学生分析解决问题的能力,掌握线面平行、线面垂直、面面垂直的判定定理是关键19();()没有95%把握;()4人【解析】【分析】()根据分层抽样比例列方程求出n的值,再计算m的值;()根据题意完善22列联表,计算K2,对照临界值表得出结论;()计算参加社区服务时间超过1小时的频率,用频率估计概率,计算所求的频数即可【详解】()由已知,该校有女生400人,故,得, 从而.()作出列联表如下:超过1小时的人数不超过1小时的人数合计男20828女12820合计321648.所以没有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关.()根据以上数据,学生一周参加社区服务时间超过1小时的概率,故估计这6名学生一周参加社区服务时间超过1小时的人数是4人.【点睛】本题考查列联表与独立性检验的应用问题,也考查了用频率估计概率的应用问题,是基础题20(1) (2) 【解析】【分析】(1)由题意可得,即可求出抛物线的方程,(2)设直线的方程为,联立消去,得,根据韦达定理结合直线,的斜率成等差数列,即可求出点的坐标.【详解】解:(1)因为,在抛物线方程中,令,可得于是当直线与轴垂直时,解得所以抛物线的方程为(2)因为抛物线的准线方程为,所以设直线的方程为,联立消去,得设,则,.若点满足条件,则,即,因为点,均在抛物线上,所以,代入化简可得,将,代入,解得将代入抛物线方程,可得于是点为满足题意的点【点睛】本题考查直线与抛物线的位置关系,考查数列与解析几何的综合,考查直线的斜率,综合性强21()在处取得极大值为,无极小值.()【解析】【分析】()求得f(x)的导数,可得切线的斜率,由两直线平行的条件:斜率相等,可得a,求出f(x)的导数和单调区间,即可得到所求极值;()设x1x2,可得f(x1)f(x2)mx12mx22,设g(x)f(x)mx2在(0,+)为增函数,设g(x)f(x)mx2在(0,+)为增函数,求得g(x)的导数,再由参数分离和构造函数,求出最值,即可得到所求m的范围【详解】()的导数为,可得的图象在点处的切线斜率为,由切线与直线平行,可得,即,当时,当时, ,所以在上递增,在上递减,可得在处取得极大值为,无极小值.()设,若,可得,即设在上增函数,即在上恒成立,可得在上恒成立,设,所以,在上递减,在上递增,在处取得极小值为,所以.【点睛】本题考查导数的运用:求切线的斜率和单调性、极值和最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论