全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行四边形的判定课题平行四边形的判定课型审核签字序号学习目标与重难点 1使学生掌握用平行四边形的定义判定一个四边形是平行四边形;2理解并掌握用一组对边平行且相等或二组对边分别相等的四边形是平行四边形3能运这三种方法来证明一个四边形是平行四边形。 教学重点和难点 重点:平行四边形的判定定理1和2;难点:掌握平行四边形的性质和判定的区别及熟练应用。恰当具体可测媒体运用多媒体课件整合点准确恰当教学思路学案导学具体明晰导语设计(一)复习提问: 1. 什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书) 2. 将以上的性质定理,分别用命题形式叙述出来。(如果那么) 根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?精炼灵活紧扣学习目标板书设计知识结构纲要化“幸福课堂”模式教学过程研讨修改一 平行四边形的判定:方法一(定义法):两组对边分别平行的四边形的平边形。几何语言表达定义法:ABCD,ADBC,四边形ABCD是平行四边形解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?活动一:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。)小结:平行四边形判定方法二:前提:若一个四边形有一组对边平行且相等。结论:这个四边形是一个平行四边形。如图用几何语言表达为:AB=CD 且ABCD四边形ABCD是平行四边形平行且相等可用符号“ ”,读作“平行且相等”。AB CD 四边形ABCD是平行四边形二例题讲解:例1:已知:E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF 求证: 图3分析:今天我们证明角相等,除了平行线,全等三角形外,又多了一个新方法,可以证明平行四边形对角相等,即只要四边形EBFD是平行四边形。由已知平行四边形ABCD的性质可得DE/BF,又ADBC,E、F为中点则有DEBF,根据“一组对边平行且相等的四边形是平行四边形”的判定定理,可得四边形EBFD是平行四边形。 证明由学生完成。 提问:此题还有什么方法,证明四边形BEDF是平行四边形。学生会想到证明,得到BEDF,利用两组对边相等证明四边形是平行四边形。但应指出第二种方法较第一种方法繁,也就是说要找出较简捷的证法,准确地使用判定定理,就要先分析图形的性质,及所具备的条件。活动二:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。三。新知探索方法三:两组对边分别相等的四边形是平行四边形。设问:这个命题的前提和结论是什么? 已知:四边形ABCD中,ABCD,ADBC 求证:四边ABCD是平行四边形。 分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。(见图1) 板书证明过程。小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:判定二:二组对边分别相等的四边形是平行四边形AB=CD,AD=BC,四边形ABCD是平行四边形练习:课本P13练习题第2题。练习:2. 已知如图7,E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AECG,BFDH。 求证:四边形EFGH是平行四边形。(让学生板演) 图7四课堂小结 今天我们主要研究了利用边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年全球及中国轮斗式洗砂机行业发展状况及前景动态预测报告
- 2024-2030年全球及中国精制无烟煤过滤材料行业发展动态及未来前景预测报告
- 2024-2030年全球及中国热熔包装胶带行业销售现状及供需前景预测报告
- 2024-2030年全球及中国汽车EMC测功机行业发展态势及盈利前景预测报告
- 2024-2030年全球及中国有机婴幼儿羊奶配方奶粉行业销售动态及营销渠道策略报告
- 2024-2030年全球及中国持续正压通气系统行业销售情况及前景规划分析报告
- 2024年搅拌车租赁协议
- 2024年投资框架补充协议
- 2024-2030年低压马达公司技术改造及扩产项目可行性研究报告
- 2024-2030年中国黑木耳多糖项目可行性研究报告
- 山西省太原市2024-2025学年高三上学期期中物理试卷(含答案)
- 酒店岗位招聘面试题与参考回答2025年
- (统编2024版)道德与法治七上10.1爱护身体 课件
- GB/T 30391-2024花椒
- 供电线路维护合同
- 胸部术后护理科普
- 鞋子工厂供货合同模板
- 2024码头租赁合同范本
- 木材采运智能决策支持系统
- 【产业图谱】2024年青岛市重点产业规划布局全景图谱(附各地区重点产业、产业体系布局、未来产业发展规划等)
- 上海市市辖区(2024年-2025年小学四年级语文)部编版期末考试(下学期)试卷及答案
评论
0/150
提交评论