2018高考数学复习第十四章推理与证明14.3数学归纳法撬题理.DOC_第1页
2018高考数学复习第十四章推理与证明14.3数学归纳法撬题理.DOC_第2页
2018高考数学复习第十四章推理与证明14.3数学归纳法撬题理.DOC_第3页
2018高考数学复习第十四章推理与证明14.3数学归纳法撬题理.DOC_第4页
2018高考数学复习第十四章推理与证明14.3数学归纳法撬题理.DOC_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2018高考数学异构异模复习考案 第十四章 推理与证明 14.3 数学归纳法撬题 理1已知数列an的各项均为正数,bnnnan(nN),e为自然对数的底数(1)求函数f(x)1xex的单调区间,并比较n与e的大小;(2)计算,由此推测计算的公式,并给出证明;(3)令cn(a1a2an),数列an,cn的前n项和分别记为Sn,Tn,证明:Tn0,即x0时,f(x)单调递增;当f(x)0时,f(x)单调递减故f(x)的单调递增区间为(,0),单调递减区间为(0,)当x0时,f(x)f(0)0,即1xex.令x,得1e,即ne.(2)11112;222(21)232;3233(31)343.由此推测:(n1)n.下面用数学归纳法证明.a当n1时,左边右边2,成立b假设当nk时,成立,即(k1)k.当nk1时,bk1(k1)k1ak1,由归纳假设可得(k1)k(k1)k1(k2)k1.所以当nk1时,也成立根据a、b,可知对一切正整数n都成立(3)证明:由cn的定义,算术几何平均不等式,bn的定义及得Tnc1c2c3cn b1b2bnb1b2bn1a12a2nanea1ea2eaneSn.即Tn1)(1)讨论f(x)的单调性;(2)设a11,an1ln (an1),证明:an.解(1)f(x)的定义域为(1,),f(x).当1a0,f(x)在(1,a22a)是增函数;若x(a22a,0),则f(x)0,f(x)在(0,)是增函数当a2时,f(x)0,f(x)0成立当且仅当x0,f(x)在(1,)是增函数;当a2时,若x(1,0),则f(x)0,f(x)在(1,0)是增函数;若x(0,a22a),则f(x)0,f(x)在(a22a,)是增函数(2)证明:由(1)知,当a2时,f(x)在(1,)是增函数当x(0,)时,f(x)f(0)0,即ln (x1)(x0)又由(1)知,当a3时,f(x)在0,3)是减函数当x(0,3)时,f(x)f(0)0,即ln (x1)(0x3)下面用数学归纳法证明an.当n1时,由已知a11,故结论成立;设当nk时结论成立,即ln ,ak1ln (ak1)ln ,即当nk1时有0),设fn(x)为fn1(x)的导数,nN*.(1)求2f1f2的值;(2)证明:对任意的nN*,等式都成立解(1)由已知,得f1(x)f0(x),于是f2(x)f1(x),所以f1,f2.故2f1f21.(2)证明:由已知,得xf0(x)sinx,等式两边分别对x求导,得f0(x)xf0(x)cosx,即f0(x)xf1(x)cosxsin,类似可得2f1(x)xf2(x)sinxsin(x),3f2(x)xf3(x)cosxsin,4f3(x)xf4(x)sinxsin(x2)下面用数学归纳法证明等式nfn1(x)xfn(x)sin对所有的nN*都成立当n1时,由上可知等式成立假设当nk时等式成立,即kfk1(x)xfk(x)sin成立因为kfk1(x)xfk(x)kfk1(x)fk(x)xfk(x)(k1)fk(x)xfk1(x),cossin,所以(k1)fk(x)xfk1(x)sin.因此当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论